Do you want to publish a course? Click here

Combination of measurements and the BLUE method

402   0   0.0 ( 0 )
 Added by Luca Lista
 Publication date 2016
  fields Physics
and research's language is English
 Authors Luca Lista




Ask ChatGPT about the research

The most accurate method to combine measurement from different experiments is to build a combined likelihood function and use it to perform the desired inference. This is not always possible for various reasons, hence approximate methods are often convenient. Among those, the best linear unbiased estimator (BLUE) is the most popular, allowing to take into account individual uncertainties and their correlations. The method is unbiased by construction if the true uncertainties and their correlations are known, but it may exhibit a bias if uncertainty estimates are used in place of the true ones, in particular if those estimated uncertainties depend on measured values. In those cases, an iterative application of the BLUE method may reduce the bias of the combined measurement.



rate research

Read More

115 - Luca Lista 2014
The best linear unbiased estimator (BLUE) is a popular statistical method adopted to combine multiple measurements of the same observable taking into account individual uncertainties and their correlation. The method is unbiased by construction if the true uncertainties and their correlation are known, but it may exhibit a bias if uncertainty estimates are used in place of the true ones, in particular if those estimated uncertainties depend on measured values. This is the case for instance when contributions to the total uncertainty are known as relative uncertainties. In those cases, an iterative application of the BLUE method may reduce the bias of the combined measurement. The impact of the iterative approach compared to the standard BLUE application is studied for a wide range of possible values of uncertainties and their correlation in the case of the combination of two measurements.
RooStatsCms is an object oriented statistical framework based on the RooFit technology. Its scope is to allow the modelling, statistical analysis and combination of multiple search channels for new phenomena in High Energy Physics. It provides a variety of methods described in literature implemented as classes, whose design is oriented to the execution of multiple CPU intensive jobs on batch systems or on the Grid.
The RooStatsCms (RSC) software framework allows analysis modelling and combination, statistical studies together with the access to sophisticated graphics routines for results visualisation. The goal of the project is to complement the existing analyses by means of their combination and accurate statistical studies.
We examine the problem of construction of confidence intervals within the basic single-parameter, single-iteration variation of the method of quasi-optimal weights. Two kinds of distortions of such intervals due to insufficiently large samples are examined, both allowing an analytical investigation. First, a criterion is developed for validity of the assumption of asymptotic normality together with a recipe for the corresponding corrections. Second, a method is derived to take into account the systematic shift of the confidence interval due to the non-linearity of the theoretical mean of the weight as a function of the parameter to be estimated. A numerical example illustrates the two corrections.
The subjects of the paper are the likelihood method (LM) and the expected Fisher information (FI) considered from the point od view of the construction of the physical models which originate in the statistical description of phenomena. The master equation case and structural information principle are derived. Then, the phenomenological description of the information transfer is presented. The extreme physical information (EPI) method is reviewed. As if marginal, the statistical interpretation of the amplitude of the system is given. The formalism developed in this paper would be also applied in quantum information processing and quantum game theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا