Do you want to publish a course? Click here

The potential of discrimination methods in a high pressure xenon TPC for the search of the neutrinoless double-beta decay of Xe-136

98   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the search for the neutrinoless double beta decay of $^{136}$Xe, a high pressure xenon time projection chamber (HPXe-TPC) has two advantages over liquid xenon TPCs: a better energy resolution and the access to topological features, which may provide extra discrimination from background events. The PandaX-III experiment has recently proposed a 200 kg HPXe-TPC based on Micromegas readout planes, to be located at the Jinping Underground Laboratory in China. Its detection concept is based on two results obtained within the T-REX project: Micromegas readouts can be built with extremely low levels of radioactivity; and the operation in xenon-trimethylamine at 10 bar in realistic experimental conditions has proven an energy resolution of 3% FWHM at the region of interest. In this work, two discrimination methods are applied to simulated signal and background data in a generic 200 kg HPXe-TPC, based on two well-known algorithms of graph theory: the identification of connections and the search for the longest path. Rejection factors greater than 100 are obtained for small pixel sizes and a signal efficiency of 40%. Moreover, a new observable (the blob charge density) rejects better surface contaminations, which makes the use of a trigger signal ($T_0$) not imperative in this experiment.



rate research

Read More

The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and for the neutrinoless double beta decay of $^{136}$Xe. Out of its 50$,$t total natural xenon inventory, 40$,$t will be the active target of a time projection chamber which thus contains about 3.6 t of $^{136}$Xe. Here, we show that its projected half-life sensitivity is $2.4times10^{27},$yr, using a fiducial volume of 5t of natural xenon and 10$,$yr of operation with a background rate of less than 0.2$~$events/(t$cdot$yr) in the energy region of interest. This sensitivity is based on a detailed Monte Carlo simulation study of the background and event topologies in the large, homogeneous target. DARWIN will be comparable in its science reach to dedicated double beta decay experiments using xenon enriched in $^{136}$Xe.
A high-pressure xenon gas time projection chamber, with a unique cellular readout structure based on electroluminescence, has been developed for a large-scale neutrinoless double-beta decay search. In order to evaluate the detector performance and validate its design, a 180~L size prototype is being constructed and its commissioning with partial detector has been performed. The obtained energy resolution at 4.0~bar is 1.73 $pm$ 0.07% (FWHM) at 511 keV. The energy resolution at the $^{136}$Xe neutrinoless double-beta decay Q-value is estimated to be between 0.79 and 1.52% (FWHM) by extrapolation. Reconstructed event topologies show patterns peculiar to track end-point which can be used to distinguish $0 ubetabeta$ signals from gamma-ray backgrounds.
Searching for the Neutrinoless Double Beta Decay (NLDBD) is now regarded as the topmost promising technique to explore the nature of neutrinos after the discovery of neutrino masses in oscillation experiments. PandaX-III (Particle And Astrophysical Xenon Experiment III) will search for the NLDBD of $^{136}$Xe at the China Jin Ping underground Laboratory (CJPL). In the first phase of the experiment, a high pressure gas Time Projection Chamber (TPC) will contain 200 kg, 90% $^{136}$Xe enriched gas operated at 10 bar. Fine pitch micro-pattern gas detector (Microbulk Micromegas) will be used at both ends of the TPC for the charge readout with a cathode in the middle. Charge signals can be used to reconstruct tracks of NLDBD events and provide good energy and spatial resolution. The detector will be immersed in a large water tank to ensure $sim$5 m of water shielding in all directions. The second phase, a ton-scale experiment, will consist of five TPCs in the same water tank, with improved energy resolution and better control over backgrounds.
We demonstrate that the application of an external magnetic field could lead to an improved background rejection in neutrinoless double-beta (0nbb) decay experiments using a high pressure xenon (HPXe) TPC. HPXe chambers are capable of imaging electron tracks, a feature that enhances the separation between signal events (the two electrons emitted in the 0nbb decay of 136Xe) and background events, arising chiefly from single electrons of kinetic energy compatible with the end-point of the 0nbb decay (Qbb ). Applying an external magnetic field of sufficiently high intensity (in the range of 0.5-1 Tesla for operating pressures in the range of 5-15 atmospheres) causes the electrons to produce helical tracks. Assuming the tracks can be properly reconstructed, the sign (direction) of curvature can be determined at several points along these tracks, and such information can be used to separate signal (0nbb) events containing two electrons producing a track with two different directions of curvature from background (single-electron) events producing a track that should spiral in a single direction. Due to electron multiple scattering, this strategy is not perfectly efficient on an event-by-event basis, but a statistical estimator can be constructed which can be used to reject background events by one order of magnitude at a moderate cost (approx. 30%) in signal efficiency. Combining this estimator with the excellent energy resolution and topological signature identification characteristic of the HPXe TPC, it is possible to reach a background rate of less than one count per ton-year of exposure. Such a low background rate is an essential feature of the next generation of 0nbb experiments, aiming to fully explore the inverse hierarchy of neutrino masses.
125 - Yuan Mei , Xiangming Sun , Nu Xu 2020
We propose a novel charge sensing concept for high-pressure Time Projection Chamber (TPC) to search for Neutrinoless Double-Beta Decay (NLDBD) with ton-scale isotope mass and beyond. A meter-sized plane, tiled with an array of CMOS integrated sensors called Topmetal that directly collect charge without gas avalanche gain, is to be deployed into a high-pressure gaseous TPC with working gases containing suitable NLDBD candidate isotopes such as Xe-136 and Se-82. The Topmetal sensor has an electronic noise <30 e- per pixel, which allows the detector to reach <1% FWHM energy resolution at the NLDBD Q-value for both Xe-136 and 82SeF6 gases by measuring ionization charges alone. The elimination of charge avalanche gain allows the direct sensing of slow-drifting ions, which enables the use of highly electronegative gas SeF6 in which free electrons do not exist. It supports the swapping of working gases without hardware modification, which is a unique way to validate signals against radioactive backgrounds. Since the sensor manufacturing and plane assembling could leverage unaltered industrial mass-production processes, stability, uniformity, scalability, and cost-effectiveness that are required for ton-scale experiments could all be reached. The strengths of TPC such as 3D ionization tracking and decay daughter tagging are retained. This development could lead to a competitive NLDBD experiment at and above ton-scale. The conceptual considerations, simulations, and initial prototyping are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا