No Arabic abstract
We study the following nonlinear critical curl-curl equation begin{equation}label{eq0.1} ablatimes ablatimes U +V(x)U=|U|^{p-2}U+ |U|^4U,quad xin mathbb{R}^3,end{equation} where $V(x)=V(r, x_3)$ with $r=sqrt{x_1^2+x_2^2}$ is 1-periodic in $x_3$ direction and belongs to $L^infty(R^3)$. When $0 otin sigma(-Delta+frac{1}{r^2}+V)$ and $pin(4,6)$, we prove the existence of nontrivial solution for (ref{eq0.1}), which is indeed a ground state solution in a suitable cylindrically symmetric space. Especially, if $ sigma(-Delta+frac{1}{r^2}+V)>0$, a ground state solution is obtained for any $pin(2,6)$.
In this paper, we study a semilinear system involving the curl operator in a bounded and convex domain in $R^3$, which comes from the steady-state approximation for Bean critical-state model for type-II superconductors. We show the existence and the $L^{infty}$ estimate for weak solutions to this system.
In this paper, we consider the following nonlinear Schr{o}dinger equations with mixed nonlinearities: begin{eqnarray*} left{aligned &-Delta u=lambda u+mu |u|^{q-2}u+|u|^{2^*-2}uquadtext{in }mathbb{R}^N, &uin H^1(bbr^N),quadint_{bbr^N}u^2=a^2, endalignedright. end{eqnarray*} where $Ngeq3$, $mu>0$, $lambdainmathbb{R}$ and $2<q<2^*$. We prove in this paper begin{enumerate} item[$(1)$]quad Existence of solutions of mountain-pass type for $N=3$ and $2<q<2+frac{4}{N} $. item[$(2)$]quad Existence and nonexistence of ground states for $2+frac{4}{N}leq q<2^*$ with $mu>0$ large. item[$(3)$]quad Precisely asymptotic behaviors of ground states and mountain-pass solutions as $muto0$ and $mu$ goes to its upper bound. end{enumerate} Our studies answer some questions proposed by Soave in cite[Remarks~1.1, 1.2 and 8.1]{S20}.
In this paper, we consider the existence and asymptotic properties of solutions to the following Kirchhoff equation begin{equation}label{1} onumber - Bigl(a+bint_{{R^3}} {{{left| { abla u} right|}^2}}Bigl) Delta u =lambda u+ {| u |^{p - 2}}u+mu {| u |^{q - 2}}u text { in } mathbb{R}^{3} end{equation} under the normalized constraint $int_{{mathbb{R}^3}} {{u}^2}=c^2$, where $a!>!0$, $b!>!0$, $c!>!0$, $2!<!q!<!frac{14}{3}!<! p!leq!6$ or $frac{14}{3}!<!q!<! p!leq! 6$, $mu!>!0$ and $lambda!in!R$ appears as a Lagrange multiplier. In both cases for the range of $p$ and $q$, the Sobolev critical exponent $p!=!6$ is involved and the corresponding energy functional is unbounded from below on $S_c=Big{ u in H^{1}({mathbb{R}^3}): int_{{mathbb{R}^3}} {{u}^2}=c^2 Big}$. If $2!<!q!<!frac{10}{3}$ and $frac{14}{3}!<! p!<!6$, we obtain a multiplicity result to the equation. If $2!<!q!<!frac{10}{3}!<! p!=!6$ or $frac{14}{3}!<!q!<! p!leq! 6$, we get a ground state solution to the equation. Furthermore, we derive several asymptotic results on the obtained normalized solutions. Our results extend the results of N. Soave (J. Differential Equations 2020 $&$ J. Funct. Anal. 2020), which studied the nonlinear Schr{o}dinger equations with combined nonlinearities, to the Kirchhoff equations. To deal with the special difficulties created by the nonlocal term $({int_{{R^3}} {left| { abla u} right|} ^2}) Delta u$ appearing in Kirchhoff type equations, we develop a perturbed Pohozaev constraint approach and we find a way to get a clear picture of the profile of the fiber map via careful analysis. In the meantime, we need some subtle energy estimates under the $L^2$-constraint to recover compactness in the Sobolev critical case.
In this paper we show the existence of infinitely many symmetric solutions for a cubic Dirac equation in two dimensions, which appears as effective model in systems related to honeycomb structures. Such equation is critical for the Sobolev embedding and solutions are found by variational methods. Moreover, we prove also prove smoothness and exponential decay at infinity.
We present a novel approach to adjust global image properties such as colour, saturation, and luminance using human-interpretable image enhancement curves, inspired by the Photoshop curves tool. Our method, dubbed neural CURve Layers (CURL), is designed as a multi-colour space neural retouching block trained jointly in three different colour spaces (HSV, CIELab, RGB) guided by a novel multi-colour space loss. The curves are fully differentiable and are trained end-to-end for different computer vision problems including photo enhancement (RGB-to-RGB) and as part of the image signal processing pipeline for image formation (RAW-to-RGB). To demonstrate the effectiveness of CURL we combine this global image transformation block with a pixel-level (local) image multi-scale encoder-decoder backbone network. In an extensive experimental evaluation we show that CURL produces state-of-the-art image quality versus recently proposed deep learning approaches in both objective and perceptual metrics, setting new state-of-the-art performance on multiple public datasets. Our code is publicly available at: https://github.com/sjmoran/CURL.