No Arabic abstract
The key to optical analogy to a multi-particle quantum system is the scalable property. Optical elds modulated with pseudorandom phase sequences is an interesting solution. By utilizing the properties of pseudorandom sequences, mixing multiple optical elds are distinguished by using coherent detection and correlation analysis that are mature methods in optical communication. In this paper, we utilize the methods to investigate optical analogies to multi-particle quantum states. In order to demonstrate the feasibility, numerical simulations are carried out in the paper, which is helpful to the experimental verication in the future.
Efficiently sampling a quantum state that is hard to distinguish from a truly random quantum state is an elementary task in quantum information theory that has both computational and physical uses. This is often referred to as pseudorandom (quantum) state generator, or PRS generator for short. In existing constructions of PRS generators, security scales with the number of qubits in the states, i.e. the (statistical) security parameter for an $n$-qubit PRS is roughly $n$. Perhaps counter-intuitively, $n$-qubit PRS are not known to imply $k$-qubit PRS even for $k<n$. Therefore the question of emph{scalability} for PRS was thus far open: is it possible to construct $n$-qubit PRS generators with security parameter $lambda$ for all $n, lambda$. Indeed, we believe that PRS with tiny (even constant) $n$ and large $lambda$ can be quite useful. We resolve the problem in this work, showing that any quantum-secure one-way function implies scalable PRS. We follow the paradigm of first showing a emph{statistically} secure construction when given oracle access to a random function, and then replacing the random function with a quantum-secure (classical) pseudorandom function to achieve computational security. However, our methods deviate significantly from prior works since scalable pseudorandom states require randomizing the amplitudes of the quantum state, and not just the phase as in all prior works. We show how to achieve this using Gaussian sampling.
We demonstrate that a tensor product structure and optical analogy of quantum entanglement can be obtained by introducing pseudorandom phase sequences into classical fields with two orthogonal modes. Using the classical analogy, we discuss efficient simulation of several typical quantum states, including product state, Bell states, GHZ state, and W state. By performing quadrature demodulation scheme, we propose a sequence permutation mechanism to simulate certain quantum states and a generalized gate array model to simulate quantum algorithm, such as Shors algorithm and Grovers algorithm. The research on classical simulation of quantum states is important, for it not only enables potential beyond quantum computation, but also provides useful insights into fundamental concepts of quantum mechanics.
We propose and experimentally demonstrate non-destructive and noiseless removal (filtering) of vacuum states from an arbitrary set of coherent states of continuous variable systems. Errors i.e. vacuum states in the quantum information are diagnosed through a weak measurement, and on that basis, probabilistically filtered out. We consider three different filters based on on/off detection phase stabilized and phase randomized homodyne detection. We find that on/off etection, optimal in the ideal theoretical setting, is superior to the homodyne strategy in a practical setting.
We demonstrate a sequence of two quantum teleportations of optical coherent states, combining two high-fidelity teleporters for continuous variables. In our experiment, the individual teleportation fidelities are evaluated as F_1 = 0.70 pm 0.02 and F_2 = 0.75 pm 0.02, while the fidelity between the input and the sequentially teleported states is determined as F^{(2)} = 0.57 pm 0.02. This still exceeds the optimal fidelity of one half for classical teleportation of arbitrary coherent states and almost attains the value of the first (unsequential) quantum teleportation experiment with optical coherent states.
We propose the concept of pseudorandom states and study their constructions, properties, and applications. Under the assumption that quantum-secure one-way functions exist, we present concrete and efficient constructions of pseudorandom states. The non-cloning theorem plays a central role in our study---it motivates the proper definition and characterizes one of the important properties of pseudorandom quantum states. Namely, there is no efficient quantum algorithm that can create more copies of the state from a given number of pseudorandom states. As the main application, we prove that any family of pseudorandom states naturally gives rise to a private-key quantum money scheme.