Do you want to publish a course? Click here

Delocalization effects, entanglement entropy and spectral collapse of boson mixtures in a double well

51   0   0.0 ( 0 )
 Added by Fabio Lingua
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the ground-state properties of a two-species condensate of interacting bosons in a double-well potential. Each atomic species is described by a two-space-mode Bose-Hubbard model. The coupling of the two species is controlled by the interspecies interaction $W$. To analyze the ground state when $W$ is varied in both the repulsive ($W>0$) and the attractive ($W<0$) regime, we apply two different approaches. First we solve the problem numerically i) to obtain an exact description of the ground-state structure and ii ) to characterize its correlation properties by studying (the appropriate extensions to the present case of) the quantum Fisher information, the coherence visibility and the entanglement entropy as functions of $W$. Then we approach analytically the description of the low-energy scenario by means of the Bogoliubov scheme. In this framework the ground-state transition from delocalized to localized species (with space separation for $W>0$, and mixing for $W<0$) is well reproduced. These predictions are qualitatively corroborated by our numerical results. We show that such a transition features a spectral collapse reflecting the dramatic change of the dynamical algebra of the four-mode model Hamiltonian.



rate research

Read More

We study the entanglement entropy and spectrum between components in binary Bose-Einstein condensates in $d$ spatial dimensions. We employ effective field theory to show that the entanglement spectrum exhibits an anomalous square-root dispersion relation in the presence of an intercomponent tunneling (a Rabi coupling) and a gapped dispersion relation in its absence. These spectral features are associated with the emergence of long-range interactions in terms of the superfluid velocity and the particle density in the entanglement Hamiltonian. Our results demonstrate that unusual long-range interactions can be emulated in a subsystem of multicomponent BECs that have only short-range interactions. We also find that for a finite Rabi coupling the entanglement entropy exhibits a volume-law scaling with subleading logarithmic corrections originating from the Nambu-Goldstone mode and the symmetry restoration for a finite volume.
214 - V.O. Nesterenko , A.N. Novikov , 2009
A complete adiabatic transport of Bose-Einstein condensate in a double-well trap is investigated within the Landau-Zener (LZ) and Gaussian Landau-Zener (GLZ) schemes for the case of a small nonlinearity, when the atomic interaction is weaker than the coupling. The schemes use the constant (LZ) and time-dependent Gaussian (GLZ) couplings. The mean field calculations show that LZ and GLZ suggest essentially different transport dynamics. Significant deviations from the case of a strong coupling are discussed.
We study interacting dipolar atomic bosons in a triple-well potential within a ring geometry. This system is shown to be equivalent to a three-site Bose-Hubbard model. We analyze the ground state of dipolar bosons by varying the effective on-site interaction. This analysis is performed both numerically and analytically by using suitable coherent-state representations of the ground state. The latter exhibits a variety of forms ranging from the su(3) coherent state in the delocalization regime to a macroscopic cat-like state with fully localized populations, passing for a coexistence regime where the ground state displays a mixed character. We characterize the quantum correlations of the ground state from the bi-partition perspective. We calculate both numerically and analytically (within the previous coherent-state representation) the single-site entanglement entropy which, among various interesting properties, exhibits a maximum value in correspondence to the transition from the cat-like to the coexistence regime. In the latter case, we show that the ground-state mixed form corresponds, semiclassically, to an energy exhibiting two almost-degenerate minima.
We investigate the tunneling properties of a two-species few-boson mixture in a one-dimensional triple well and harmonic trap. The mixture is prepared in an initial state with a strong spatial correlation for one species and a complete localization for the other species. We observe a correlation-induced tunneling process in the weak interspecies interaction regime. The onset of the interspecies interaction disturbes the spatial correlation of one species and induces tunneling among the correlated wells. The corresponding tunneling properties can be controlled by the spatial correlations with an underlying mechanism which is inherently different from the well known resonant tunneling process. We also observe the correlated tunneling of both species in the intermediate interspecies interaction regime and the tunneling via higher band states for strong interactions.
We apply the theory of Quantum Generalized Hydrodynamics (QGHD) introduced in [Phys. Rev.Lett. 124, 140603 (2020)] to derive asymptotically exact results for the density fluctuations and theentanglement entropy of a one-dimensional trapped Bose gas in the Tonks-Girardeau (TG) or hard-core limit, after a trap quench from a double well to a single well. On the analytical side, thequadratic nature of the theory of QGHD is complemented with the emerging conformal invarianceat the TG point to fix the universal part of those quantities. Moreover, the well-known mapping ofhard-core bosons to free fermions, allows to use a generalized form of the Fisher-Hartwig conjectureto fix the non-trivial spacetime dependence of the ultraviolet cutoff in the entanglement entropy. Thefree nature of the TG gas also allows for more accurate results on the numerical side, where a highernumber of particles as compared to the interacting case can be simulated. The agreement betweenanalytical and numerical predictions is extremely good. For the density fluctuations, however, onehas to average out large Friedel oscillations present in the numerics to recover such agreement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا