Do you want to publish a course? Click here

WR 148: Identifying the companion of an extreme runaway massive binary

115   0   0.0 ( 0 )
 Added by Melissa Munoz
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

WR 148 (HD 197406) is an extreme runaway system considered to be a potential candidate for a short-period (4.3173 d) rare WR + compact object binary. Provided with new high resolution, high signal-to-noise spectra from the Keck observatory, we determine the orbital parameters for both the primary WR and the secondary, yielding respective projected orbital velocity amplitudes of $88.1pm3.8$ km s$^{-1}$ and $79.2pm3.1$ km s$^{-1}$ and implying a mass ratio of $1.1pm0.1$. We then apply the shift-and-add technique to disentangle the spectra and obtain spectra compatible with a WN7ha and an O4-6 star. Considering an orbital inclination of $sim67^circ$, derived from previous polarimetry observations, the systems total mass would be a mere 2-3 M$_{odot}$ , an unprecedented result for a putative massive binary system. However, a system comprising a 37 M$_{odot}$ secondary (typical mass of an O5V star) and a 33 M$_{odot}$ primary (given the mass ratio) would infer an inclination of $sim18^circ$. We therefore reconsider the previous methods of deriving the orbital inclination based on time-dependent polarimetry and photometry. While the polarimetric results are inconclusive requiring better data, the photometric results favour low inclinations. Finally, we compute WR 148s space velocity and retrace the runaways trajectory back to the Galactic plane (GP). With an ejection velocity of $198pm27$ km s$^{-1}$ and a travel time of $4.7pm0.8$ Myr to reach its current location, WR 148 was most likely ejected via dynamical interactions in a young cluster.



rate research

Read More

We present new spectropolarimetric data for WR 42 collected over 6 months at the 11-m Southern African Large Telescope (SALT) using the Robert Stobie Spectrograph.
73 - A. Collado 2015
Double-lined spectroscopic binary systems, containing a Wolf-Rayet and a massive O-type star, are key objects for the study of massive star evolution because these kinds of systems allow the determination of fundamental astrophysical parameters of their components. We have performed spectroscopic observations of the star WR 68a as part of a dedicated monitoring program of WR stars to discover new binary systems. We identified spectral lines of the two components of the system and disentangled the spectra. We measured the radial velocities in the separated spectra and determined the orbital solution. We discovered that WR 68a is a double- lined spectroscopic binary with an orbital period of 5.2207 days, very small or null eccentricity, and inclination ranging between 75 and 85 deg. We classified the binary components as WN6 and O5.5-6. The WN star is less massive than the O-type star with minimum masses of 15 +/- 5 Msun and 30 +/- 4 Msun , respectively. The equivalent width of the He II {lambda}4686 emission line shows variations with the orbital phase, presenting a minimum when the WN star is in front of the system. The light curve constructed from available photometric data presents minima in both conjunctions of the system
We present a new set of radial-velocity measurements of the spectroscopic binary HD 165052 obtained by disentangling of high-resolution optical spectra. The longitude of the periastron (60 +- 2 degrees) shows a variation with respect to previous studies. We have determined the apsidal motion rate of the system (12.1 +- 0.3 degree/yr), which was used to calculate the absolute masses of the binary components: M_1 = 22.5 +- 1.0 and M_2 = 20.5 +- 0.9 solar masses. Analysing the separated spectra we have re-classified the components as O7Vz and O7.5Vz stars.
126 - E. R. Parkin , E. Gosset 2011
We examine the dependence of the wind-wind collision and subsequent X-ray emission from the massive WR+O star binary WR~22 on the acceleration of the stellar winds, radiative cooling, and orbital motion. Simulations were performed with instantaneously accelerated and radiatively driven stellar winds. Radiative transfer calculations were performed on the simulation output to generate synthetic X-ray data, which are used to conduct a detailed comparison against observations. When instantaneously accelerated stellar winds are adopted in the simulation, a stable wind-wind collision region (WCR) is established at all orbital phases. In contrast, when the stellar winds are radiatively driven, and thus the acceleration regions of the winds are accounted for, the WCR is far more unstable. As the stars approach periastron, the ram pressure of the WRs wind overwhelms the O stars and, following a significant disruption of the shocks by non-linear thin-shell instabilities (NTSIs), the WCR collapses onto the O star. X-ray calculations reveal that when a stable WCR exists the models over-predict the observed X-ray flux by more than two orders of magnitude. The collapse of the WCR onto the O star substantially reduces the discrepancy in the $2-10;$keV flux to a factor of $simeq 6$ at $phi=0.994$. However, the observed spectrum is not well matched by the models. We conclude that the agreement between the models and observations could be improved by increasing the ratio of the mass-loss rates in favour of the WR star to the extent that a normal wind ram pressure balance does not occur at any orbital phase, potentially leading to a sustained collapse of the WCR onto the O star. Radiative braking may then play a significant r^{o}le for the WCR dynamics and resulting X-ray emission.
HD 15137 is an intriguing runaway O-type binary system that offers a rare opportunity to explore the mechanism by which it was ejected from the open cluster of its birth. Here we present recent blue optical spectra of HD 15137 and derive a new orbital solution for the spectroscopic binary and physical parameters of the O star primary. We also present the first XMM-Newton observations of the system. Fits of the EPIC spectra indicate soft, thermal X-ray emission consistent with an isolated O star. Upper limits on the undetected hard X-ray emission place limits on the emission from a proposed compact companion in the system, and we rule out a quiescent neutron star in the propellor regime or a weakly accreting neutron star. An unevolved secondary companion is also not detected in our optical spectra of the binary, and it is difficult to conclude that a gravitational interaction could have ejected this runaway binary with a low mass optical star. HD 15137 may contain an elusive neutron star in the ejector regime or a quiescent black hole with conditions unfavorable for accretion at the time of our observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا