A new concept for a hybrid structure gaseous detector module with ion backflow suppression for the time projection chamber in a future circular collider is presented. It is a hybrid structure cascaded Gas Electron Multiplier (GEM) with a Micromegas detector. Both Micromegas and GEM have the capability to naturally reduce most of the ions produced in the amplification region. The GEM also acts as the preamplifer device and increases gas gain together with the Micromegas. Feasibility tests of the hybrid detector are performed using an ${}^{55}$Fe X-ray source. The energy resolution is better than 27% for 5.9 keV X-rays. It is demonstrated that a backflow ratio better than 0.2% can be reached in the hybrid readout structure at a gain of 5000.
A systematic study is performed to measure the ion backflow fraction of the GEM detectors. The effects of different voltage configurations and Ar/CO_2 gas mixtures, in ratios of 70:30, 80:20 and 90:10, on positive ion fraction are investigated in detail. Moreover, a comparative study is performed between single and quadruple GEM detectors.The ion current with detector effective gain is measured with various field configurations and with three proportions of gas mixtures. The ion backflow fraction for the GEM is substantially reduced with the lower drift field. A minimum ion backflow fraction of 18 % is achieved in the single GEM detector with Ar/CO_2 80:20 gas mixture, however, a minimum ion backflow fraction of 3.5 %, 3.0%, and 3.8 % are obtained for a drift field of 0.1kV/cm with Ar/CO_2 70:30, 80:20 and 90:10 gas mixtures, respectively for quadrupole GEM detector. Similar values of effective gain and ion backflow fraction have been found by calculating the current from pulse height spectrum method, obtained in the Multi Channel Analyser.
A thin single-element THGEM-based, Resistive-Plate WELL (RPWELL) detector was operated with 150 GeV/c muon and pion beams in Ne/(5%CH$_4$), Ar/(5%CH$_4$) and Ar/(7%CO$_2$); signals were recorded with 1 cm$^2$ square pads and SRS/APV25 electronics. Detection efficiency values greater than 98% were reached in all the gas mixtures, at average pad multiplicity of 1.2. The use of the 10$^9${Omega}cm resistive plate resulted in a completely discharge-free operation also in intense pion beams. The efficiency remained essentially constant at 98-99% up to fluxes of $sim$10$^4$Hz/cm$^2$, dropping by a few % when approaching 10$^5$ Hz/cm$^2$. These results pave the way towards cost-effective, robust, efficient, large-scale detectors for a variety of applications in future particle, astro-particle and applied fields. A potential target application is digital hadron calorimetry.
In-beam evaluation of a fully-equipped medium-size 30$times$30 cm$^2$ Resistive Plate WELL (RPWELL) detector is presented. It consists here of a single element gas-avalanche multiplier with Semitron ESD225 resistive plate, 1 cm$^2$ readout pads and APV25/SRS electronics. Similarly to previous results with small detector prototypes, stable operation at high detection efficiency (>98%) and low average pad multiplicity (~1.2) were recorded with 150 GeV muon and high-rate pion beams, in Ne/(5%CH$_4$), Ar/(5%CH$_4$) and Ar/(7%CO$_2$). This is an important step towards the realization of robust detectors suitable for applications requiring large-area coverage; among them Digital Hadron Calorimetry.
We have developed a low-energy electron recoil (ER) calibration method with $^{220}$Rn for the PandaX-II detector. $^{220}$Rn, emanated from natural thorium compounds, was fed into the detector through the xenon purification system. From 2017 to 2019, we performed three dedicated calibration campaigns with different radon sources. We studied the detector response to $alpha$, $beta$, and $gamma$ particles with focus on low energy ER events. During the runs in 2017 and 2018, the amount of radioactivity of $^{222}$Rn were on the order of 1% of that of $^{220}$Rn and thorium particulate contamination was negligible, especially in 2018. We also measured the background contribution from $^{214}$Pb for the first time in PandaX-II with the help from a $^{222}$Rn injection. Calibration strategy with $^{220}$Rn and $^{222}$Rn will be implemented in the upcoming PandaX-4T experiment and can be useful for other xenon-based detectors as well.
A picoammeter system has been developed and engineering. It consists in a current-voltage converter, based on an operational amplifier with very low input current, a high precision ADC, a radio controlled data acquisition unit and the computer-based control, visualization and storage. The precision is of the order of a tenth of picoampers and it can measure currents between electrodes at potentials up to 8 kV. The system is battery powered and a number of strategies have been implemented to limit the power consumption. The system is designed for multichannel applications, up to 256 parallel channels. The overall implementation is cost-effective to make the availability of multichannel setups easily affordable. The design, implementation and performance of the picoammeter system are described in detail as well as a an application: the measurement of ion backflow in MPGD-based photon detectors.