Do you want to publish a course? Click here

The Resistive-Plate WELL with Argon mixtures - a robust gaseous radiation detector

106   0   0.0 ( 0 )
 Added by Luca Moleri
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A thin single-element THGEM-based, Resistive-Plate WELL (RPWELL) detector was operated with 150 GeV/c muon and pion beams in Ne/(5%CH$_4$), Ar/(5%CH$_4$) and Ar/(7%CO$_2$); signals were recorded with 1 cm$^2$ square pads and SRS/APV25 electronics. Detection efficiency values greater than 98% were reached in all the gas mixtures, at average pad multiplicity of 1.2. The use of the 10$^9${Omega}cm resistive plate resulted in a completely discharge-free operation also in intense pion beams. The efficiency remained essentially constant at 98-99% up to fluxes of $sim$10$^4$Hz/cm$^2$, dropping by a few % when approaching 10$^5$ Hz/cm$^2$. These results pave the way towards cost-effective, robust, efficient, large-scale detectors for a variety of applications in future particle, astro-particle and applied fields. A potential target application is digital hadron calorimetry.



rate research

Read More

In-beam evaluation of a fully-equipped medium-size 30$times$30 cm$^2$ Resistive Plate WELL (RPWELL) detector is presented. It consists here of a single element gas-avalanche multiplier with Semitron ESD225 resistive plate, 1 cm$^2$ readout pads and APV25/SRS electronics. Similarly to previous results with small detector prototypes, stable operation at high detection efficiency (>98%) and low average pad multiplicity (~1.2) were recorded with 150 GeV muon and high-rate pion beams, in Ne/(5%CH$_4$), Ar/(5%CH$_4$) and Ar/(7%CO$_2$). This is an important step towards the realization of robust detectors suitable for applications requiring large-area coverage; among them Digital Hadron Calorimetry.
Digital and Semi-Digital Hadronic Calorimeters (S)DHCAL were suggested for future Colliders as part of the particle-flow concept. Though studied mostly with RPC-based techniques, investigations have shown that MPGD-based sampling elements could outperform. An attractive, industry-produced, robust, particle-tracking detector for large-area coverage, e.g. in (S)DHCAL, could be the novel single-stage Resistive Plate WELL (RPWELL). It is a single-sided THGEM coupled to the segmented readout electrode through a sheet of large bulk resistivity. We summarize here the preliminary test-beam results obtained with 6.5 mm thick (incl. electronics) {$48 times 48,mathrm{cm^2}$}~RPWELL detectors. Two configurations are considered: a standalone RPWELL detector studied with 150 GeV muons and high-rate pions beams and RPWELL sampling element investigated within a small-(S)DHCAL prototype consisting of 7 resistive MICROMEGAS sampling elements followed by 5 RPWELL ones. The sampling elements were equipped with a Semi-Digital readout electronics based on the MICROROC chip.
151 - A. Roy 2019
We present for the first time, discharge-free operation at cryogenic conditions of a Resistive-Plate WELL (RPWELL) detector. It is a single-sided Thick Gaseous Electron Multiplier (THGEM) coupled to a readout anode via a plate of high bulk resistivity. The results of single- and double-stage RPWELL detectors operated in stable conditions in Ne/5$%$CH$_{4}$ at 163 K are summarized. The RPWELL comprised a ferric-based (Fe$^{3+}$) ceramic composite (Fe-ceramic) as the resistive plate, of volume resistivity $sim$$10^{11}$ $Omega$$cdot$cm at this temperature. Gains of $sim$$10^{4}$ and $sim$$10^{5}$ were reached with the single-stage RPWELL, with 6 keV X-rays and single UV-photons, respectively. The double-stage detector, a THGEM followed by the RPWELL, reached gains $sim$$10^{5}$ and $sim$$10^{6}$ with X-rays and single UV-photons, respectively. The results were obtained with and without a CsI photocathode on the first multiplying element. Potential applications at these cryogenic conditions are discussed.
The muon identification system of the ALICE experiment at the CERN LHC is based on Resistive Plate Chamber (RPC) detectors. These RPCs are operated in the so-called maxi-avalanche mode with a gas mixture made of tetrafluoroethane (C$_{2}$H$_{2}$F$_{4}$), sulfur hexafluoride (SF$_{6}$) and isobutane (i-C$_{4}$H$_{10}$). All of these components are greenhouse gases: in particular, the first two gases are already phasing out of production, due to recent European Union regulations, and their cost is progressively increasing. Therefore, finding a new eco-friendly gas mixture has become extremely important in order to reduce the impact of the RPC operation on the environment, and for economic reasons. Due to the similar chemical structure, hydrofluoroolefins appear appropriate candidates to replace C$_{2}$H$_{2}$F$_{4}$ thanks to their very low GWPs, especially tetrafluoropropene (C$_{3}$H$_{2}$F$_{4}$) with the trade name HFO1234ze. In order to identify an eco-friendly gas mixture fulfilling the requirements for operation in the ALICE environment in the coming years, a dedicated experimental set-up has been built to carry out R&D studies on promising gas mixtures. Measurements have been performed with a small-size RPC equipped with the front-end electronics, providing signal amplification, developed for ALICE operation at high luminosity after the LHC Long Shutdown 2. HFO1234ze-based mixtures with the addition of CO$_{2}$ are discussed in this paper as well as the role of i-C$_{4}$H$_{10}$ and SF$_{6}$ as quenchers in such mixtures.
120 - R. Hadjiiska 2013
The Resistive Plate Chamber (RPC) muon subsystem contributes significantly to the formation of the trigger decision and reconstruction of the muon trajectory parameters. Simulation of the RPC response is a crucial part of the entire CMS Monte Carlo software and directly influences the final physical results. An algorithm based on the parametrization of RPC efficiency, noise, cluster size and timing for every strip has been developed. Experimental data obtained from cosmic and proton-proton collisions at $sqrt{s}=7$ TeV have been used for determination of the parameters. A dedicated validation procedure has been developed. A good agreement between the simulated and experimental data has been achieved.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا