Do you want to publish a course? Click here

Level-crossing spectroscopy of nitrogen-vacancy centers in diamond: sensitive detection of paramagnetic defect centers

98   0   0.0 ( 0 )
 Added by Sergei Anishchik
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a magnetic field dependence of fluorescence of diamond single crystals containing NV$^-$ centers. In such spectra, numerous sharp lines are found, which correspond to Level Anti-Crossings (LACs) in coupled spins systems comprising an NV$^-$ center. Theoretical modeling of such LAC-spectra enables characterization of paramagnetic defect centers and determination of their magnetic resonance parameters, such as zero-field splitting and hyperfine coupling constants. The outlined method thus enables sensitive detection of paramagnetic impurities in diamond crystals.



rate research

Read More

We report a study of the magnetic field dependence of photoluminescence of NV$^-$ centers (negatively charged nitrogen-vacancy centers) in diamond single crystals. In such a magnetic field dependence characteristic sharp features are observed, which are coming from Level Anti-Crossings (LACs) in a coupled electron-nuclear spin system. For sensitive detection of such LAC-lines we use lock-in detection to measure the photoluminescence intensity. This experimental technique allows us to obtain new LAC lines. Additionally, a remarkably strong dependence of the LAC-lines on the modulation frequency is found. Specifically, upon decrease of the modulation frequency from 12 kHz to 17 Hz the amplitude of the LAC-lines increases by approximately two orders of magnitude. To take a quantitative account for such effects, we present a theoretical model, which describes the spin dynamics in a coupled electron-nuclear spin system under the action of an oscillating external magnetic field. Good agreement between experiments and theory allows us to conclude that the observed effects are originating from coherent spin polarization exchange in a coupled spin system comprising the spin-polarized NV$^-$ center. Our results are of great practical importance allowing one to optimize the experimental conditions for probing LAC-derived lines in diamond crystals comprising NV$^-$ centers and for indirect detection and identification of other paramagnetic defect centers.
A study of the photophysical properties of nitrogen-vacancy (NV) color centers in diamond nanocrystals of size of 50~nm or below is carried out by means of second-order time-intensity photon correlation and cross-correlation measurements as a function of the excitation power for both pure charge states, neutral and negatively charged, as well as for the photochromic state, where the center switches between both states at any power. A dedicated three-level model implying a shelving level is developed to extract the relevant photophysical parameters coupling all three levels. Our analysis confirms the very existence of the shelving level for the neutral NV center. It is found that it plays a negligible role on the photophysics of this center, whereas it is responsible for an increasing photon bunching behavior of the negative NV center with increasing power. From the photophysical parameters, we infer a quantum efficiency for both centers, showing that it remains close to unity for the neutral center over the entire power range, whereas it drops with increasing power from near unity to approximately 0.5 for the negative center. The photophysics of the photochromic center reveals a rich phenomenology that is to a large extent dominated by that of the negative state, in agreement with the excess charge release of the negative center being much slower than the photon emission process.
The dependence of the luminescence of diamonds with negatively charged nitrogen-vacancy centers (NV-) vs. applied magnetic field (magnetic spectrum) was studied. A narrow line in zero magnetic field was discovered. The properties of this line are considerably different from those of other narrow magnetic spectrum lines. Its magnitude is weakly dependent of the orientation of the single-crystal sample to the external magnetic field. This line is also observed in a powdered sample. The shape of the line changes greatly when excitation light polarization is varied. The magnitude of the line has a non-linear relation to excitation light intensity. For low intensities this dependence is close to a square law. To explain the mechanism giving rise to this line in the magnetic spectrum, we suggest a model based on the dipole-dipole interaction between different NV- centers.
We use magnetic-field-dependent features in the photoluminescence of negatively charged nitrogen-vacancy centers to measure magnetic fields without the use of microwaves. In particular, we present a magnetometer based on the level anti-crossing in the triplet ground state at 102.4 mT with a demonstrated noise floor of 6 nT/$sqrt{text{Hz}}$, limited by the intensity noise of the laser and the performance of the background-field power supply. The technique presented here can be useful in applications where the sensor is placed closed to conductive materials, e.g. magnetic induction tomography or magnetic field mapping, and in remote-sensing applications since principally no electrical access is needed.
493 - Dolev Bluvstein , Zhiran Zhang , 2018
The charge degree of freedom in solid-state defects fundamentally underpins the electronic spin degree of freedom, a workhorse of quantum technologies. Here we study charge state properties of individual near-surface nitrogen-vacancy (NV) centers in diamond, where NV$^{-}$ hosts the metrologically relevant electron spin. We find that NV$^{-}$ initialization fidelity varies between individual centers and over time, and we alleviate the deleterious effects of reduced NV$^{-}$ initialization fidelity via logic-based initialization. We also find that NV$^{-}$ can ionize in the dark, which compromises spin measurements but is mitigated by measurement protocols we present here. We identify tunneling to a single, local electron trap as the mechanism for ionization in the dark and we develop NV-assisted techniques to control and readout the trap charge state. Our understanding and command of the NVs local electrostatic environment will simultaneously guide materials design and provide novel functionalities with NV centers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا