No Arabic abstract
We report the second complete molecular line data release from the {em Census of High- and Medium-mass Protostars} (CHaMP), a large-scale, unbiased, uniform mapping survey at sub-parsec resolution, of mm-wave line emission from 303 massive, dense molecular clumps in the Milky Way. This release is for all $^{12}$CO $J$=1$rightarrow$0 emission associated with the dense gas, the first from Phase II of the survey, which includes $^{12}$CO, $^{13}$CO, and C$^{18}$O. The observed clump emission traced by both $^{12}$CO and HCO$^+$ (from Phase I) shows very similar morphology, indicating that, for dense molecular clouds and complexes of all sizes, parsec-scale clumps contain $Xi$ ~ 75% of the mass, while only 25% of the mass lies in extended (>~ 10 pc) or low density components in these same areas. The mass fraction of all gas above a density 10$^9$ m$^{-3}$ is $xi_9$ >~ 50%. This suggests that parsec-scale clumps may be the basic building blocks of the molecular ISM, rather than the standard GMC concept. Using $^{12}$CO emission, we derive physical properties of these clumps in their entirety, and compare them to properties from HCO$^+$, tracing their denser interiors. We compare the standard X-factor converting $I_{CO}$ to $N_{H_2}$ with alternative
We present the second dust continuum data release in the Census of High- and Medium-mass Protostars (CHaMP), expanding the methodology trialed in Pitts et al. 2019 to the entire CHaMP survey area ($280^{circ}<l<300^{circ}$, $-4^{circ}<b<+2^{circ}$). This release includes maps of dust temperature ($T_d$), H$_2$ column density ($N_{H_2}$), gas-phase CO abundance, and temperature-density plots for every prestellar clump with Herschel coverage, showing no evidence of internal heating for most clumps in our sample. We show that CO abundance is a strong function of $T_d$, and can be fit with a second-order polynomial in log-space, with a typical dispersion of a factor of 2--3. The CO abundance peaks at $20.0^{+0.4}_{-1.0}$ K with a value of $7.4^{+0.2}_{-0.3}times10^{-5}$ per H$_2$; the low $T_d$ at which this maximal abundance occurs relative to laboratory results is likely due to interstellar UV bombardment in the largest survey fields. Finally, we show that, as predicted by theoretical literature and hinted at in previous studies of individual clouds, the conversion factor from integrated $^{12}$CO line intensity ($I_{^{12}CO}$) to $N_{H_2}$, the $X_{CO}$-factor, varies as a broken power-law in $I_{^{12}CO}$ with a transition zone between 70 and 90 K km$^{-1}$. The $X_{CO}$-function we propose has $N_{H_2}propto I_{^{12}CO}^{0.51}$ for $I_{^{12}CO}lesssim70$ K km$^{-1}$ and $N_{H_2}propto I_{^{12}CO}^{2.3}$ for $I_{^{12}CO}gtrsim90$ K km$^{-1}$. The high-$I_{^{12}CO}$ side should be generalizable with known adjustments for metallicity, but the influence of interstellar UV fields on the low-$I_{^{12}CO}$ side may be sample specific. We discuss how these results expand upon previous works in the CHaMP series, and help tie together observational, theoretical, and laboratory studies on CO over the past decade.
We present $^{12}$CO, $^{13}$CO, and C$^{18}$O data as the next major release for the CHaMP project, an unbiased sample of Galactic molecular clouds in $l$ = 280$^{circ}$-300$^{circ}$. From a radiative transfer analysis, we self-consistently compute 3D cubes of optical depth, excitation temperature, and column density for $sim$300 massive clumps, and update the $I_{rm CO}$-dependent CO$rightarrow$H$_2$ conversion law of Barnes et al (2015). For $N$ $propto$ $I^p$, we find $p$ = 1.92$pm$0.05 for the velocity-resolved conversion law aggregated over all clumps. A practical, integrated conversion law is $N_{rm CO}$ = (4.0$pm$0.3)$times$10$^{19}$m$^{-2}$ $I_{rm CO}^{1.27pm0.02}$, confirming an overall 2$times$ higher total molecular mass for Milky Way clouds, compared to the standard $X$ factor. We use these laws to compare the kinematics of clump interiors with their foreground $^{12}$CO envelopes, and find evidence that most clumps are not dynamically uniform: irregular portions seem to be either slowly accreting onto the interiors, or dispersing from them. We compute the spatially-resolved mass accretion/dispersal rate across all clumps, and map the local flow timescale. While these flows are not clearly correlated with clump structures, the inferred accretion rate is a statistically strong function of the local mass surface density $Sigma$, suggesting near-exponential growth or loss of mass over effective timescales $sim$30-50 Myr. At high enough $Sigma$, accretion dominates, suggesting gravity plays an important role in both processes. If confirmed by numerical simulations, this sedimentation picture would support arguments for long clump lifetimes mediated by pressure confinement, with a terminal crescendo of star formation, suggesting a resolution to the 40-yr-old puzzle of the dynamical state of molecular clouds and their low star formation efficiency.
The Census of High- and Medium-mass Protostars (CHaMP) is the first large-scale, unbiased, uniform mapping survey at sub-parsec scale resolution of 90 GHz line emission from massive molecular clumps in the Milky Way. We present the first Mopra (ATNF) maps of the CHaMP survey region (300{deg}>l>280{deg}) in the HCO+ J=1-0 line, which is usually thought to trace gas at densities up to 10^11 m-3. In this paper we introduce the survey and its strategy, describe the observational and data reduction procedures, and give a complete catalogue of moment maps of the HCO+ J=1-0 emission from the ensemble of 301 massive molecular clumps. From these maps we also derive the physical parameters of the clumps, using standard molecular spectral-line analysis techniques. This analysis yields the following range of properties: integrated line intensity 1-30 K km s-1, peak line brightness 1-7 K, linewidth 1-10 km s-1, integrated line luminosity 0.5-200 K km s-1 pc^2, FWHM size 0.2-2.5 pc, mean projected axial ratio 2, optical depth 0.08-2, total surface density 30-3000 M{sun} pc-2, number density 0.2-30 x 10^9 m-3, mass 15-8000 M{sun}, virial parameter 1-55, and total gas pressure 0.3-700 pPa. We find that the CHaMP clumps do not obey a Larson-type size-linewidth relation. Among the clumps, there exists a large population of subthermally excited, weakly-emitting (but easily detectable) dense molecular clumps, confirming the prediction of Narayanan et al. (2008). These weakly-emitting clumps comprise 95% of all massive clumps by number, and 87% of the molecular mass, in this portion of the Galaxy; their properties are distinct from the brighter massive star-forming regions that are more typically studied. If the clumps evolve by slow contraction, the 95% of fainter clumps may represent a long-lived stage of pressure-confined, gravitationally stable massive clump evolution, while the CHaMP ... (abridged)
Context: Intermediate mass protostars provide a bridge between low- and high-mass protostars. Furthermore, they are an important component of the UV interstellar radiation field. Despite their relevance, little is known about their formation process. Aims: We present a systematic study of the physical structure of five intermediate mass, candidate Class 0 protostars. Our two goals are to shed light on the first phase of intermediate mass star formation and to compare these protostars with low- and high-mass sources. Methods: We derived the dust and gas temperature and density profiles of the sample. We analysed all existing continuum data on each source and modelled the resulting SED with the 1D radiative transfer code DUSTY. The gas temperature was then predicted by means of a modified version of the code CHT96. Results: We found that the density profiles of five out of six studied intermediate mass envelopes are consistent with the predictions of the inside-out collapse theory.We compared several physical parameters, like the power law index of the density profile, the size, the mass, the average density, the density at 1000 AU and the density at 10 K of the envelopes of low-, intermediate, and high-mass protostars. When considering these various physical parameters, the transition between the three groups appears smooth, suggesting that the formation processes and triggers do not substantially differ.
Observations of dense molecular gas lie at the basis of our understanding of the density and temperature structure of protostellar envelopes and molecular outflows. We aim to characterize the properties of the protostellar envelope, molecular outflow and surrounding cloud, through observations of high excitation molecular lines within a sample of 16 southern sources presumed to be embedded YSOs. Observations of submillimeter lines of CO, HCO+ and their isotopologues, both single spectra and small maps were taken with the FLASH and APEX-2a instruments mounted on APEX to trace the gas around the sources. The HARP-B instrument on the JCMT was used to map IRAS 15398-3359 in these lines. HCO+ mapping probes the presence of dense centrally condensed gas, a characteristic of protostellar envelopes. The rare isotopologues C18O and H13CO+ are also included to determine the optical depth, column density, and source velocity. The combination of multiple CO transitions, such as 3-2, 4-3 and 7-6, allows to constrain outflow properties, in particular the temperature. Archival submillimeter continuum data are used to determine envelope masses. Eleven of the sixteen sources have associated warm and/or dense quiescent as characteristic of protostellar envelopes, or an associated outflow. Using the strength and degree of concentration of the HCO+ 4-3 and CO 4-3 lines as a diagnostic, five sources classified as Class I based on their spectral energy distributions are found not to be embedded YSOs. The C18O 3-2 lines show that for none of the sources, foreground cloud layers are present. Strong molecular outflows are found around six sources, .. (continued in paper)