No Arabic abstract
We present experimental studies of the power spectrum and other fluctuation properties in the spectra of microwave networks simulating chaotic quantum graphs with violated time reversal in- variance. On the basis of our data sets we demonstrate that the power spectrum in combination with other long-range and also short-range spectral fluctuations provides a powerful tool for the identification of the symmetries and the determination of the fraction of missing levels. Such a pro- cedure is indispensable for the evaluation of the fluctuation properties in the spectra of real physical systems like, e.g., nuclei or molecules, where one has to deal with the problem of missing levels.
We report on the experimental investigation of the fluctuation properties in the resonance frequency spectra of a flat resonator simulating a dissipative quantum billiard subject to partial time-reversal invariance violation (TIV) which is induced by two magnetized ferrites. The cavity has the shape of a quarter bowtie billiard of which the corresponding classical dynamics is chaotic. Due to dissipation it is impossible to identify a complete list of resonance frequencies. Based on a random-matrix theory approach we derive analytical expressions for statistical measures of short- and long-range correlations in such incomplete spectra interpolating between the cases of preserved time-reversal invariance and complete TIV and demonstrate their applicability to the experimental spectra.
We present an experimental study of missing level statistics of three-dimensional chaotic microwave cavities. The investigation is reinforced by the power spectrum of level fluctuations analysis which also takes into account the missing levels. On the basis of our data sets we demonstrate that the power spectrum of level fluctuations in combination with short- and long-range spectral fluctuations provides a powerful tool for the determination of the fraction of randomly missing levels in systems that display wave chaos such as the three-dimensional chaotic microwave cavities. The experimental results are in good agreement with the analytical expressions that explicitly take into account the fraction of observed levels. We also show that in the case of incomplete spectra with many unresolved states the above procedures may fail. In such a case the random matrix theory calculations can be useful for the determination of missing levels.
We present experimental and numerical results for the long-range fluctuation properties in the spectra of quantum graphs with chaotic classical dynamics and preserved time-reversal invariance. Such systems are generally believed to provide an ideal basis for the experimental study of prob- lems originating from the field of quantum chaos and random matrix theory. Our objective is to demonstrate that this is true only for short-range fluctuation properties in the spectra, whereas the observation of deviations in the long-range fluctuations is typical for quantum graphs. This may be attributed to the unavoidable occurrence of short periodic orbits, which explore only the individual bonds forming a graph and thus do not sense the chaoticity of its dynamics. In order to corrobo- rate our supposition, we performed numerous experimental and corresponding numerical studies of long-range fluctuations in terms of the number variance and the power spectrum. Furthermore, we evaluated length spectra and compared them to semiclassical ones obtained from the exact trace formula for quantum graphs.
The influence of absorption on the spectra of microwave graphs has been studied experimentally. The microwave networks were made up of coaxial cables and T junctions. First, absorption was introduced by attaching a 50 Ohm load to an additional vertex for graphs with and without time-reversal symmetry. The resulting level-spacing distributions were compared with a generalization of the Wigner surmise in the presence of open channels proposed recently by Poli et al. [Phys. Rev. Lett. 108, 174101 (2012)]. Good agreement was found using an effective coupling parameter. Second, absorption was introduced along one individual bond via a variable microwave attenuator, and the influence of absorption on the length spectrum was studied. The peak heights in the length spectra corresponding to orbits avoiding the absorber were found to be independent of the attenuation, whereas, the heights of the peaks belonging to orbits passing the absorber once or twice showed the expected decrease with increasing attenuation.
A necessary and sufficient condition in order that a (diagonalizable) pseudohermitian operator admits an antilinear symmetry T such that T^{2}=-1 is proven. This result can be used as a quick test on the T-invariance properties of pseudohermitian Hamiltonians, and such test is indeed applied, as an example, to the Mashhoon-Papini Hamiltonian.