Do you want to publish a course? Click here

Young Peoples Burden: Requirement of Negative CO2 Emissions

91   0   0.0 ( 0 )
 Added by James Hansen
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Global temperature is a fundamental climate metric highly correlated with sea level, which implies that keeping shorelines near their present location requires keeping global temperature within or close to its preindustrial Holocene range. However, global temperature excluding short-term variability now exceeds +1degC relative to the 1880-1920 mean and annual 2016 global temperature was almost +1.3degC. We show that global temperature has risen well out of the Holocene range and Earth is now as warm as during the prior interglacial, when sea level reached 6-9 meters higher than today. Further, Earth is out of energy balance with present atmospheric composition, implying more warming is in the pipeline, and we show that the growth rate of greenhouse gas climate forcing has accelerated markedly in the past decade. The rapidity of ice sheet and sea level response to global temperature is difficult to predict but is dependent on the magnitude of warming. Targets for limiting global warming should aim to avoid leaving global temperature at Eemian or higher levels for centuries. Such targets require negative emissions, extraction of CO2 from the air. If phasedown of fossil fuel emissions begins soon, improved agricultural and forestry practices may provide much of the extraction, and the magnitude and duration of global temperature excursion above the natural range of the current interglacial could be limited and irreversible impacts minimized. In contrast, continued high emissions place a burden on young people to undertake massive technological CO2 extraction to limit climate change and its consequences. Proposed methods of extraction have minimal estimated costs of 89-535 trillion dollars this century and have large risks and uncertain feasibility. Continued high emissions unarguably sentences young people to a massive, implausible cleanup, growing deleterious climate impacts or both.

rate research

Read More

Climate change is a pressing issue that is currently affecting and will affect every part of our lives. Its becoming incredibly vital we, as a society, address the climate crisis as a universal effort, including those in the Computer Vision (CV) community. In this work, we analyze the total cost of CO2 emissions by breaking it into (1) the architecture creation cost and (2) the life-time evaluation cost. We show that over time, these costs are non-negligible and are having a direct impact on our future. Importantly, we conduct an ethical analysis of how the CV-community is unintentionally overlooking its own ethical AI principles by emitting this level of CO2. To address these concerns, we propose adding enforcement as a pillar of ethical AI and provide some recommendations for how architecture designers and broader CV community can curb the climate crisis.
The technical and economic feasibility to deliver sustainable liquid biocrude through hydrothermal liquefaction (HTL) while enabling negative carbon dioxide emissions is evaluated in this paper, looking into the potential of the process in the context of negative emission technologies (NETs) for climate change mitigation. In the HTL process, a gas phase consisting mainly of carbon dioxide is obtained as a side product driving a potential for the implementation of carbon capture and storage in the process (BECCS) that has not been explored yet in the existing literature and is undertaken in this study. To this end, the process is divided in a standard HTL base and a carbon capture add-on, having forestry residues as feedstock. The Selexol technology is adapted in a novel scheme to simultaneously separate the CO2 from the HTL gas and recover the excess hydrogen for biocrude upgrading. The cost evaluation indicates that the additional cost of the carbon capture can be compensated by revenues from the excess process heat and the European carbon allowance market. The impact in the MFSP of the HTL base case ranges from -7% to 3%, with -15% in the most favorable scenario, with a GHG emissions reduction potential of 102-113% compared to the fossil baseline. These results show that the implementation of CCS in the HTL process is a promising alternative from technical, economic and environmental perspective in future scenarios in which advanced liquid biofuels and NETs are expected to play a role in the decarbonization of the energy system.
388 - J. Hansen , M. Sato (1 2008
Additional material supporting the article Target atmospheric CO2: Where should humanity aim?
404 - J. Hansen , M. Sato (1 2008
Paleoclimate data show that climate sensitivity is ~3 deg-C for doubled CO2, including only fast feedback processes. Equilibrium sensitivity, including slower surface albedo feedbacks, is ~6 deg-C for doubled CO2 for the range of climate states between glacial conditions and ice-free Antarctica. Decreasing CO2 was the main cause of a cooling trend that began 50 million years ago, large scale glaciation occurring when CO2 fell to 450 +/- 100 ppm, a level that will be exceeded within decades, barring prompt policy changes. If humanity wishes to preserve a planet similar to that on which civilization developed and to which life on Earth is adapted, paleoclimate evidence and ongoing climate change suggest that CO2 will need to be reduced from its current 385 ppm to at most 350 ppm. The largest uncertainty in the target arises from possible changes of non-CO2 forcings. An initial 350 ppm CO2 target may be achievable by phasing out coal use except where CO2 is captured and adopting agricultural and forestry practices that sequester carbon. If the present overshoot of this target CO2 is not brief, there is a possibility of seeding irreversible catastrophic effects.
Cenozoic temperature, sea level and CO2 co-variations provide insights into climate sensitivity to external forcings and sea level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise paleoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity 3 +/- 1{deg}C for 4 W/m2 CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e., 3-4{deg}C for 4 W/m2 CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state-dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapor elevates the tropopause. Burning all fossil fuels, we conclude, would make much of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا