Do you want to publish a course? Click here

Belt(s) of debris resolved around the Sco-Cen star HIP 67497

216   0   0.0 ( 0 )
 Added by Mickael Bonnefoy
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In 2015, we initiated a survey of Scorpius-Centaurus A-F stars that are predicted to host warm-inner and cold-outer belts of debris similar to the case of the system HR~8799. The survey aims to resolve the disks and detect planets responsible for the disk morphology. In this paper, we study the F-type star HIP~67497 and present a first-order modelisation of the disk in order to derive its main properties. We used the near-infrared integral field spectrograph (IFS) and dual-band imager IRDIS of VLT/SPHERE to obtain angular-differential imaging observations of the circumstellar environnement of HIP~67497. We removed the stellar halo with PCA and TLOCI algorithms. We modeled the disk emission with the GRaTeR code. We resolve a ring-like structure that extends up to $sim$450 mas ($sim$50 au) from the star in the IRDIS and IFS data. It is best reproduced by models of a non-eccentric ring with an inclination of $80pm1^{circ}$, a position angle of $-93pm1^{circ}$, and a semi-major axis of $59pm3$ au. We also detect an additional, but fainter, arc-like structure with a larger extension (0.65 arcsec) South of the ring that we model as a second belt of debris at $sim$130 au. We detect 10 candidate companions at separations $geq$1. We estimate the mass of putative perturbers responsible for the disk morphology and compare it to our detection limits. Additional data are needed to find those perturbers, and to relate our images to large-scale structures seen with HST/STIS.



rate research

Read More

We present the first scattered light image of the debris disk around HD 129590, a ~1.3 M$_odot$ G1V member of the Scorpius Centaurus association with age ~10-16 Myr. The debris disk is imaged with the high contrast imaging instrument SPHERE at the Very Large Telescope, and is revealed by both the IRDIS and IFS subsytems, operating in the H and YJ bands respectively. The disk has a high infrared luminosity of $L_{textrm{IR}}/L_{textrm{star}}$~5$times$10$^{-3}$, and has been resolved in other studies using ALMA. We detect a nearly edge on ring, with evidence of an inner clearing. We fit the debris disk using a model characterized by a single bright ring, with radius ~60-70 AU, in broad agreement with previous analysis of the target SED. The disk is vertically thin, and has an inclination angle of ~75$^circ$. Along with other previously imaged edge-on disks in the Sco-Cen association such as HD 110058, HD 115600, and HD 111520, this disk image will allow of the structure and morphology of very young debris disks, shortly after the epoch of planet formation has ceased.
The majority of debris discs discovered so far have only been detected through infrared excess emission above stellar photospheres. While disc properties can be inferred from unresolved photometry alone under various assumptions for the physical properties of dust grains, there is a degeneracy between disc radius and dust temperature that depends on the grain size distribution and optical properties. By resolving the disc we can measure the actual location of the dust. The launch of Herschel, with an angular resolution superior to previous far-infrared telescopes, allows us to spatially resolve more discs and locate the dust directly. Here we present the nine resolved discs around A stars between 20 and 40 pc observed by the DEBRIS survey. We use these data to investigate the disc radii by fitting narrow ring models to images at 70, 100 and 160 {mu}m and by fitting blackbodies to full spectral energy distributions. We do this with the aim of finding an improved way of estimating disc radii for unresolved systems. The ratio between the resolved and blackbody radii varies between 1 and 2.5. This ratio is inversely correlated with luminosity and any remaining discrepancies are most likely explained by differences to the minimum size of grain in the size distribution or differences in composition. We find that three of the systems are well fit by a narrow ring, two systems are borderline cases and the other four likely require wider or multiple rings to fully explain the observations, reflecting the diversity of planetary systems.
179 - C. Thalmann 2013
We present Subaru/HiCIAO H-band high-contrast images of the debris disk around HIP 79977, whose pres- ence was recently inferred from an infrared excess. Our images resolve the disk for the first time, allowing characterization of its shape, size, and dust grain properties. We use angular differential imaging (ADI) to reveal the disk geometry in unpolarized light out to a radius of ~2, as well as polarized differential imaging (PDI) to measure the degree of scattering polarization out to ~1.5. In order to strike a favorable balance between suppression of the stellar halo and conservation of disk flux, we explore the application of principal component analysis (PCA) to both ADI and reference star subtraction. This allows accurate forward modeling of the effects of data reduction on simulated disk images, and thus direct comparison with the imaged disk. The resulting best-fit values and well-fitting intervals for the model parameters are a surface brightness power-law slope of S_out = -3.2 [-3.6,-2.9], an inclination of i = 84{deg} [81{deg},86{deg}], a high Henyey-Greenstein forward-scattering parameter of g = 0.45 [0.35, 0.60], and a non-significant disk-star offset of u = 3.0 [-1.5, 7.5] AU = 24 [-13, 61] mas along the line of nodes. Furthermore, the tangential linear polarization along the disk rises from ~10% at 0.5 to ~45% at 1.5. These measurements paint a consistent picture of a disk of dust grains produced by collisional cascades and blown out to larger radii by stellar radiation pressure.
We present observations of the known edge-on debris disk around HIP 79977 (HD 146897, F star in Upper Sco, 123 pc), taken with the ZIMPOL differential polarimeter of the SPHERE instrument in the Very Broad Band filter ($lambda_c=735$ nm, $Deltalambda=290$ nm) with a spatial resolution of about 25 mas. We measure the polarization flux along and perpendicular to the disk spine of the highly inclined disk for projected separations between 0.2 (25 AU) and 1.6 (200 AU) and investigate the diagnostic potential of such data with model simulations. The polarized flux contrast ratio for the disk is $F_{pol}/F_ast= (5.5 pm 0.9) 10^{-4}$. The surface brightness reaches a maximum of 16.2 mag arcsec$^{-2}$ at a separation of $0.2-0.5$ along the disk spine with a maximum surface brightness contrast of 7.64 mag arcsec$^{-2}$. The polarized flux has a minimum near the star $<0.2$ because no or only little polarization is produced by forward or backward scattering in the disk section lying in front of or behind the star. The data are modeled as a circular dust belt with an inclination $i=85(pm 1.5)^circ$ and a radius between $r_0$ = 60 AU and 90 AU. The radial density dependence is described by $(r/r_0)^{alpha}$ with a steep power law index $alpha=5$ inside $r_0$ and a more shallow index $alpha=-2.5$ outside $r_0$. The scattering asymmetry factor lies between $g$ = 0.2 and 0.6 adopting a scattering angle-dependence for the fractional polarization as for Rayleigh scattering. Our data are qualitatively very similar to the case of AU Mic and they confirm that edge-on debris disks have a polarization minimum at a position near the star and a maximum near the projected separation of the main debris belt. The comparison of the polarized flux contrast ratio $F_{pol}/F_{ast}$ with the fractional infrared excess provides strong constraints on the scattering albedo of the dust.
137 - A. Moor , P. Abraham , A. Kospal 2013
Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD95086. The strong infrared excess of the system indicates that, similarly to HR8799, {ss} Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of ~6.0x5.4 arcsec (540x490 AU) and disk inclination of ~25 degree. Assuming the same inclination for the planet candidates orbit, its re-projected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modelling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks co-exist.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا