Do you want to publish a course? Click here

Inverse Problems with Invariant Multiscale Statistics

100   0   0.0 ( 0 )
 Added by Ivan Dokmanic
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We propose a new approach to linear ill-posed inverse problems. Our algorithm alternates between enforcing two constraints: the measurements and the statistical correlation structure in some transformed space. We use a non-linear multiscale scattering transform which discards the phase and thus exposes strong spectral correlations otherwise hidden beneath the phase fluctuations. As a result, both constraints may be put into effect by linear projections in their respective spaces. We apply the algorithm to super-resolution and tomography and show that it outperforms ad hoc convex regularizers and stably recovers the missing spectrum.

rate research

Read More

We present a novel algorithm based on the ensemble Kalman filter to solve inverse problems involving multiscale elliptic partial differential equations. Our method is based on numerical homogenization and finite element discretization and allows to recover a highly oscillatory tensor from measurements of the multiscale solution in a computationally inexpensive manner. The properties of the approximate solution are analysed with respect to the multiscale and discretization parameters, and a convergence result is shown to hold. A reinterpretation of the solution from a Bayesian perspective is provided, and convergence of the approximate conditional posterior distribution is proved with respect to the Wasserstein distance. A numerical experiment validates our methodology, with a particular emphasis on modelling error and computational cost.
146 - Anh Tran , Tim Wildey 2020
Determining process-structure-property linkages is one of the key objectives in material science, and uncertainty quantification plays a critical role in understanding both process-structure and structure-property linkages. In this work, we seek to learn a distribution of microstructure parameters that are consistent in the sense that the forward propagation of this distribution through a crystal plasticity finite element model (CPFEM) matches a target distribution on materials properties. This stochastic inversion formulation infers a distribution of acceptable/consistent microstructures, as opposed to a deterministic solution, which expands the range of feasible designs in a probabilistic manner. To solve this stochastic inverse problem, we employ a recently developed uncertainty quantification (UQ) framework based on push-forward probability measures, which combines techniques from measure theory and Bayes rule to define a unique and numerically stable solution. This approach requires making an initial prediction using an initial guess for the distribution on model inputs and solving a stochastic forward problem. To reduce the computational burden in solving both stochastic forward and stochastic inverse problems, we combine this approach with a machine learning (ML) Bayesian regression model based on Gaussian processes and demonstrate the proposed methodology on two representative case studies in structure-property linkages.
Predictive high-fidelity finite element simulations of human cardiac mechanics co-mmon-ly require a large number of structural degrees of freedom. Additionally, these models are often coupled with lumped-parameter models of hemodynamics. High computational demands, however, slow down model calibration and therefore limit the use of cardiac simulations in clinical practice. As cardiac models rely on several patient-specific parameters, just one solution corresponding to one specific parameter set does not at all meet clinical demands. Moreover, while solving the nonlinear problem, 90% of the computation time is spent solving linear systems of equations. We propose a novel approach to reduce only the structural dimension of the monolithically coupled structure-windkessel system by projection onto a lower-dimensional subspace. We obtain a good approximation of the displacement field as well as of key scalar cardiac outputs even with very few reduced degrees of freedom while achieving considerable speedups. For subspace generation, we use proper orthogonal decomposition of displacement snapshots. To incorporate changes in the parameter set into our reduced order model, we provide a comparison of subspace interpolation methods. We further show how projection-based model order reduction can be easily integrated into a gradient-based optimization and demonstrate its performance in a real-world multivariate inverse analysis scenario. Using the presented projection-based model order reduction approach can significantly speed up model personalization and could be used for many-query tasks in a clinical setting.
Determining a process-structure-property relationship is the holy grail of materials science, where both computational prediction in the forward direction and materials design in the inverse direction are essential. Problems in materials design are often considered in the context of process-property linkage by bypassing the materials structure, or in the context of structure-property linkage as in microstructure-sensitive design problems. However, there is a lack of research effort in studying materials design problems in the context of process-structure linkage, which has a great implication in reverse engineering. In this work, given a target microstructure, we propose an active learning high-throughput microstructure calibration framework to derive a set of processing parameters, which can produce an optimal microstructure that is statistically equivalent to the target microstructure. The proposed framework is formulated as a noisy multi-objective optimization problem, where each objective function measures a deterministic or statistical difference of the same microstructure descriptor between a candidate microstructure and a target microstructure. Furthermore, to significantly reduce the physical waiting wall-time, we enable the high-throughput feature of the microstructure calibration framework by adopting an asynchronously parallel Bayesian optimization by exploiting high-performance computing resources. Case studies in additive manufacturing and grain growth are used to demonstrate the applicability of the proposed framework, where kinetic Monte Carlo (kMC) simulation is used as a forward predictive model, such that for a given target microstructure, the target processing parameters that produced this microstructure are successfully recovered.
Despite the great promise of the physics-informed neural networks (PINNs) in solving forward and inverse problems, several technical challenges are present as roadblocks for more complex and realistic applications. First, most existing PINNs are based on point-wise formulation with fully-connected networks to learn continuous functions, which suffer from poor scalability and hard boundary enforcement. Second, the infinite search space over-complicates the non-convex optimization for network training. Third, although the convolutional neural network (CNN)-based discrete learning can significantly improve training efficiency, CNNs struggle to handle irregular geometries with unstructured meshes. To properly address these challenges, we present a novel discrete PINN framework based on graph convolutional network (GCN) and variational structure of PDE to solve forward and inverse partial differential equations (PDEs) in a unified manner. The use of a piecewise polynomial basis can reduce the dimension of search space and facilitate training and convergence. Without the need of tuning penalty parameters in classic PINNs, the proposed method can strictly impose boundary conditions and assimilate sparse data in both forward and inverse settings. The flexibility of GCNs is leveraged for irregular geometries with unstructured meshes. The effectiveness and merit of the proposed method are demonstrated over a variety of forward and inverse computational mechanics problems governed by both linear and nonlinear PDEs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا