Do you want to publish a course? Click here

The Void Galaxy Survey: Photometry, structure and identity of void galaxies

112   0   0.0 ( 0 )
 Added by Burcu Beygu
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze photometry from deep B-band images of 59 void galaxies in the Void Galaxy Survey (VGS), together with their near-infrared 3.6$mu$m and 4.5$mu$m Spitzer photometry. The VGS galaxies constitute a sample of void galaxies that were selected by a geometric-topological procedure from the SDSS DR7 data release, and which populate the deep interior of voids. Our void galaxies span a range of absolute B-magnitude from $rm{M_B=-15.5}$ to $rm{M_B=-20}$, while at the 3.6$mu$m band their magnitudes range from $rm{M_{3.6}=-18}$ to $rm{M_{3.6}=-24}$. Their B-[3.6] colour and structural parameters indicate these are star forming galaxies. A good reflection of the old stellar population, the near-infrared band photometry also provide a robust estimate of the stellar mass, which for the VGS galaxies we confirm to be smaller than $3 times 10^{10}$ M$_odot$. In terms of the structural parameters and morphology, our findings align with other studies in that our VGS galaxy sample consists mostly of small late-type galaxies. Most of them are similar to Sd-Sm galaxies, although a few are irregularly shaped galaxies. The sample even includes two early-type galaxies, one of which is an AGN. Their S{e}rsic indices are nearly all smaller than $n=2$ in both bands and they also have small half-light radii. In all, we conclude that the principal impact of the void environment on the galaxies populating them mostly concerns their low stellar mass and small size.



rate research

Read More

Voids represent a unique environment for the study of galaxy evolution, as the lower density environment is expected to result in shorter merger histories and slower evolution of galaxies. This provides an ideal opportunity to test theories of galaxy formation and evolution. Imaging of the neutral hydrogen, central in both driving and regulating star formation, directly traces the gas reservoir and can reveal interactions and signs of cold gas accretion. For a new Void Galaxy Survey (VGS), we have carefully selected a sample of 59 galaxies that reside in the deepest underdensities of geometrically identified voids within the SDSS at distances of ~100 Mpc, and pursued deep UV, optical, Halpha, IR, and HI imaging to study in detail the morphology and kinematics of both the stellar and gaseous components. This sample allows us to not only examine the global statistical properties of void galaxies, but also to explore the details of the dynamical properties. We present an overview of the VGS, and highlight key results on the HI content and individually interesting systems. In general, we find that the void galaxies are gas rich, low luminosity, blue disk galaxies, with optical and HI properties that are not unusual for their luminosity and morphology. We see evidence of both ongoing assembly, through the gas dynamics between interacting systems, and significant gas accretion, seen in extended gas disks and kinematic misalignments. The VGS establishes a local reference sample to be used in future HI surveys (CHILES, DINGO, LADUMA) that will directly observe the HI evolution of void galaxies over cosmic time.
The current Lambda CDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (M_r > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.
The Void Galaxy Survey (VGS) is a multi-wavelength program to study $sim$60 void galaxies. Each has been selected from the deepest interior regions of identified voids in the SDSS redshift survey on the basis of a unique geometric technique, with no a prior selection of intrinsic properties of the void galaxies. The project intends to study in detail the gas content, star formation history and stellar content, as well as kinematics and dynamics of void galaxies and their companions in a broad sample of void environments. It involves the HI imaging of the gas distribution in each of the VGS galaxies. Amongst its most tantalizing findings is the possible evidence for cold gas accretion in some of the most interesting objects, amongst which are a polar ring galaxy and a filamentary configuration of void galaxies. Here we shortly describe the scope of the VGS and the results of the full analysis of the pilot sample of 15 void galaxies.
We present a sample of 66 galaxies belonging to the equatorial part (Dec.= -7$^o$, +7$^o$) of the large so called Eridanus void (after Fairall 1998). The void galaxies are selected as to be separated from the luminous galaxies ($M_{rm B} < M_{rm B}^{*} +1$), delineating the void, by more than 2 Mpc. Our main goal is to study systematically the evolutionary parameters of the void sample (metallicity and gas content) and to compare the void galaxy properties with their counterparts residing in denser environments. Besides the general galaxy parameters, compiled mainly from the literature, we present the results of dedicated observations to measure the oxygen abundance O/H in HII-regions of 23 void galaxies obtained with the 11-m SALT telescope (SAAO) and the 6-m BTA telescope (SAO), as well as the O/H estimates derived from the analysis of the SDSS DR12 spectra for 3 objects. We compiled all available data on O/H in 36 these void galaxies, including those for 11 galaxies available in the literature (for one object both SDSS and SALT spectra were used), and analyze this data in relation to galaxy luminosity ($log$(O/H) versus $M_{rm B}$). Comparing them with the control sample of similar type galaxies from the Local Volume, we find clear evidence for a substantially lower average metallicity of the Eridanus void galaxies. This result matches well the conclusions of our recent similar study for galaxies in the Lynx-Cancer void.
96 - S. Pustilnik 2010
The nearby Lynx-Cancer void is a good laboratory to study the effect of very rarefied environment on the evolution of the least massive dwarf galaxies. A recently compiled sample of this voids galaxies includes about one hundred objects with M_B in the range -12 to -18 mag. Good quality images are available in the SDSS database for ~80% of the sample. Their u,g,r,i,z photometry allows one to derive galaxy stellar mass (and, incorporating HI data, gas mass-fraction) and ages of visible stellar populations, and hence, the epoch of their formation (first SF episode). We present the first photometric results of the ongoing study of the Lynx-Cancer void.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا