No Arabic abstract
This work is devoted to a vast extension of Sanovs theorem, in Laplace principle form, based on alternatives to the classical convex dual pair of relative entropy and cumulant generating functional. The abstract results give rise to a number of probabilistic limit theorems and asymptotics. For instance, widely applicable non-exponential large deviation upper bounds are derived for empirical distributions and averages of i.i.d. samples under minimal integrability assumptions, notably accommodating heavy-tailed distributions. Other interesting manifestations of the abstract results include new results on the rate of convergence of empirical measures in Wasserstein distance, uniform large deviation bounds, and variational problems involving optimal transport costs, as well as an application to error estimates for approximate solutions of stochastic optimization problems. The proofs build on the Dupuis-Ellis weak convergence approach to large deviations as well as the duality theory for convex risk measures.
We show that every $mathbb{R}^d$-valued Sobolev path with regularity $alpha$ and integrability $p$ can be lifted to a Sobolev rough path provided $alpha < 1/p<1/3$. The novelty of our approach is its use of ideas underlying Hairers reconstruction theorem generalized to a framework allowing for Sobolev models and Sobolev modelled distributions. Moreover, we show that the corresponding lifting map is locally Lipschitz continuous with respect to the inhomogeneous Sobolev metric.
Consider a measurable space with a finite vector measure. This measure defines a mapping of the $sigma$-field into a Euclidean space. According to Lyapunovs convexity theorem, the range of this mapping is compact and, if the measure is atomless, this range is convex. Similar ranges are also defined for measurable subsets of the space. We show that the union of the ranges of all subsets having the same given vector measure is also compact and, if the measure is atomless, it is convex. We further provide a geometrically constructed convex compactum in the Euclidean space that contains this union. The equality of these two sets, that holds for two-dimensional measures, can be violated in higher dimensions.
Let $mathfrak{z}$ be a stochastic exponential, i.e., $mathfrak{z}_t=1+int_0^tmathfrak{z}_{s-}dM_s$, of a local martingale $M$ with jumps $triangle M_t>-1$. Then $mathfrak{z}$ is a nonnegative local martingale with $Emathfrak{z}_tle 1$. If $Emathfrak{z}_T= 1$, then $mathfrak{z}$ is a martingale on the time interval $[0,T]$. Martingale property plays an important role in many applications. It is therefore of interest to give natural and easy verifiable conditions for the martingale property. In this paper, the property $Emathfrak{z}_{_T}=1$ is verified with the so-called linear growth conditions involved in the definition of parameters of $M$, proposed by Girsanov cite{Girs}. These conditions generalize the Bene^s idea, cite{Benes}, and avoid the technology of piece-wise approximation. These conditions are applicable even if Novikov, cite{Novikov}, and Kazamaki, cite{Kaz}, conditions fail. They are effective for Markov processes that explode, Markov processes with jumps and also non Markov processes. Our approach is different to recently published papers cite{CFY} and cite{MiUr}.
The field theory dual to the Freedman-Townsend model of a non-Abelian anti-symmetric tensor field is a nonlinear sigma model on the group manifold G. This can be extended to the duality between the Freedman-Townsend model coupled to Yang-Mills fields and a nonlinear sigma model on a coset space G/H. We present the supersymmetric extension of this duality, and find that the target space of this nonlinear sigma model is a complex coset space, GC/HC.
In this paper we study smooth complex projective varieties $X$ containing a Grassmannian of lines $G(1,r)$ which appears as the zero locus of a section of a rank two nef vector bundle $E$. Among other things we prove that the bundle $E$ cannot be ample.