No Arabic abstract
We consider an efficient preconditioner for boundary integral equation (BIE) formulations of the two-dimensional Stokes equations in porous media. While BIEs are well-suited for resolving the complex porous geometry, they lead to a dense linear system of equations that is computationally expensive to solve for large problems. This expense is further amplified when a significant number of iterations is required in an iterative Krylov solver such as GMRES. In this paper, we apply a fast inexact direct solver, the inverse fast multipole method (IFMM), as an efficient preconditioner for GMRES. This solver is based on the framework of $mathcal{H}^{2}$-matrices and uses low-rank compressions to approximate certain matrix blocks. It has a tunable accuracy $varepsilon$ and a computational cost that scales as $mathcal{O} (N log^2 1/varepsilon)$. We discuss various numerical benchmarks that validate the accuracy and confirm the efficiency of the proposed method. We demonstrate with several types of boundary conditions that the preconditioner is capable of significantly accelerating the convergence of GMRES when compared to a simple block-diagonal preconditioner, especially for pipe flow problems involving many pores.
We study several iterative methods for fully coupled flow and reactive transport in porous media. The resulting mathematical model is a coupled, nonlinear evolution system. The flow model component builds on the Richards equation, modified to incorporate nonstandard effects like dynamic capillarity and hysteresis, and a reactive transport equation for the solute. The two model components are strongly coupled. On one hand, the flow affects the concentration of the solute; on the other hand, the surface tension is a function of the solute, which impacts the capillary pressure and, consequently, the flow. After applying an Euler implicit scheme, we consider a set of iterative linearization schemes to solve the resulting nonlinear equations, including both monolithic and two splitting strategies. The latter include a canonical nonlinear splitting and an alternate linearized splitting, which appears to be overall faster in terms of numbers of iterations, based on our numerical studies. The (time discrete) system being nonlinear, we investigate different linearization methods. We consider the linearly convergent L-scheme, which converges unconditionally, and the Newton method, converging quadratically but subject to restrictions on the initial guess. Whenever hysteresis effects are included, the Newton method fails to converge. The L-scheme converges; nevertheless, it may require many iterations. This aspect is improved by using the Anderson acceleration. A thorough comparison of the different solving strategies is presented in five numerical examples, implemented in MRST, a toolbox based on MATLAB.
The purposes of this work are to study the $L^{2}$-stability of a Navier-Stokes type model for non-stationary flow in porous media proposed by Hsu and Cheng in 1989 and to develop a Lagrange-Galerkin scheme with the Adams-Bashforth method to solve that model numerically.The stability estimate is obtained thanks to the presence of a nonlinear drag force term in the model which corresponds to the Forchheimer term. We derive the Lagrange-Galerkin scheme by extending the idea of the method of characteristics to overcome the difficulty which comes from the non-homogeneous porosity. Numerical experiments are conducted to investigate the experimental order of convergence of the scheme. For both simple and complex designs of porosities, our numerical simulations exhibit natural flow profiles which well describe the flow in non-homogeneous porous media.
In this work, we consider a mathematical model for flow in a unsaturated porous medium containing a fracture. In all subdomains (the fracture and the adjacent matrix blocks) the flow is governed by Richards equation. The submodels are coupled by physical transmission conditions expressing the continuity of the normal fluxes and of the pressures. We start by analyzing the case of a fracture having a fixed width-length ratio, called $varepsilon > 0$. Then we take the limit $varepsilon to 0$ and give a rigorous proof for the convergence towards effective models. This is done in different regimes, depending on how the ratio of porosities and permeabilities in the fracture, respectively matrix scale with respect to $varepsilon$, and leads to a variety of effective models. Numerical simulations confirm the theoretical upscaling results.
In this paper, we study a model for the transport of an external component, e.g., a surfactant, in variably saturated porous media. We discretize the model in time and space by combining a backward Euler method with the linear Galerkin finite elements. The Newton method and the L-Scheme are employed for the linearization and the performance of these schemes is studied numerically. A special focus is set on the effects of dynamic capillarity on the transport equation.
A nonlinear multigrid solver for two-phase flow and transport in a mixed fractional-flow velocity-pressure-saturation formulation is proposed. The solver, which is under the framework of the full approximation scheme (FAS), extends our previous work on nonlinear multigrid for heterogeneous diffusion problems. The coarse spaces in the multigrid hierarchy are constructed by first aggregating degrees of freedom, and then solving some local flow problems. The mixed formulation and the choice of coarse spaces allow us to assemble the coarse problems without visiting finer levels during the solving phase, which is crucial for the scalability of multigrid methods. Specifically, a natural generalization of the upwind flux can be evaluated directly on coarse levels using the precomputed coarse flux basis vectors. The resulting solver is applicable to problems discretized on general unstructured grids. The performance of the proposed nonlinear multigrid solver in comparison with the standard single level Newtons method is demonstrated through challenging numerical examples. It is observed that the proposed solver is robust for highly nonlinear problems and clearly outperforms Newtons method in the case of high Courant-Friedrichs-Lewy (CFL) numbers.