No Arabic abstract
Compared with automatic speech recognition (ASR), the human auditory system is more adept at handling noise-adverse situations, including environmental noise and channel distortion. To mimic this adeptness, auditory models have been widely incorporated in ASR systems to improve their robustness. This paper proposes a novel auditory model which incorporates psychoacoustics and otoacoustic emissions (OAEs) into ASR. In particular, we successfully implement the frequency-dependent property of psychoacoustic models and effectively improve resulting system performance. We also present a novel double-transform spectrum-analysis technique, which can qualitatively predict ASR performance for different noise types. Detailed theoretical analysis is provided to show the effectiveness of the proposed algorithm. Experiments are carried out on the AURORA2 database and show that the word recognition rate using our proposed feature extraction method is significantly increased over the baseline. Given models trained with clean speech, our proposed method achieves up to 85.39% word recognition accuracy on noisy data.
The performances of automatic speech recognition (ASR) systems are usually evaluated by the metric word error rate (WER) when the manually transcribed data are provided, which are, however, expensively available in the real scenario. In addition, the empirical distribution of WER for most ASR systems usually tends to put a significant mass near zero, making it difficult to simulate with a single continuous distribution. In order to address the two issues of ASR quality estimation (QE), we propose a novel neural zero-inflated model to predict the WER of the ASR result without transcripts. We design a neural zero-inflated beta regression on top of a bidirectional transformer language model conditional on speech features (speech-BERT). We adopt the pre-training strategy of token level mask language modeling for speech-BERT as well, and further fine-tune with our zero-inflated layer for the mixture of discrete and continuous outputs. The experimental results show that our approach achieves better performance on WER prediction in the metrics of Pearson and MAE, compared with most existed quality estimation algorithms for ASR or machine translation.
Modern Automatic Speech Recognition (ASR) systems can achieve high performance in terms of recognition accuracy. However, a perfectly accurate transcript still can be challenging to read due to disfluency, filter words, and other errata common in spoken communication. Many downstream tasks and human readers rely on the output of the ASR system; therefore, errors introduced by the speaker and ASR system alike will be propagated to the next task in the pipeline. In this work, we propose an ASR post-processing model that aims to transform the incorrect and noisy ASR output into a readable text for humans and downstream tasks. We leverage the Metadata Extraction (MDE) corpus to construct a task-specific dataset for our study. Since the dataset is small, we propose a novel data augmentation method and use a two-stage training strategy to fine-tune the RoBERTa pre-trained model. On the constructed test set, our model outperforms a production two-step pipeline-based post-processing method by a large margin of 13.26 on readability-aware WER (RA-WER) and 17.53 on BLEU metrics. Human evaluation also demonstrates that our method can generate more human-readable transcripts than the baseline method.
In this paper, we propose MixSpeech, a simple yet effective data augmentation method based on mixup for automatic speech recognition (ASR). MixSpeech trains an ASR model by taking a weighted combination of two different speech features (e.g., mel-spectrograms or MFCC) as the input, and recognizing both text sequences, where the two recognition losses use the same combination weight. We apply MixSpeech on two popular end-to-end speech recognition models including LAS (Listen, Attend and Spell) and Transformer, and conduct experiments on several low-resource datasets including TIMIT, WSJ, and HKUST. Experimental results show that MixSpeech achieves better accuracy than the baseline models without data augmentation, and outperforms a strong data augmentation method SpecAugment on these recognition tasks. Specifically, MixSpeech outperforms SpecAugment with a relative PER improvement of 10.6$%$ on TIMIT dataset, and achieves a strong WER of 4.7$%$ on WSJ dataset.
Non-autoregressive (NAR) transformer models have been studied intensively in automatic speech recognition (ASR), and a substantial part of NAR transformer models is to use the casual mask to limit token dependencies. However, the casual mask is designed for the left-to-right decoding process of the non-parallel autoregressive (AR) transformer, which is inappropriate for the parallel NAR transformer since it ignores the right-to-left contexts. Some models are proposed to utilize right-to-left contexts with an extra decoder, but these methods increase the model complexity. To tackle the above problems, we propose a new non-autoregressive transformer with a unified bidirectional decoder (NAT-UBD), which can simultaneously utilize left-to-right and right-to-left contexts. However, direct use of bidirectional contexts will cause information leakage, which means the decoder output can be affected by the character information from the input of the same position. To avoid information leakage, we propose a novel attention mask and modify vanilla queries, keys, and values matrices for NAT-UBD. Experimental results verify that NAT-UBD can achieve character error rates (CERs) of 5.0%/5.5% on the Aishell1 dev/test sets, outperforming all previous NAR transformer models. Moreover, NAT-UBD can run 49.8x faster than the AR transformer baseline when decoding in a single step.
This paper is focused on the finetuning of acoustic models for speaker adaptation goals on a given gender. We pretrained the Transformer baseline model on Librispeech-960 and conduct experiments with finetuning on the gender-specific test subsets and. In general, we do not obtain essential WER reduction by finetuning techniques by this approach. We achieved up to ~5% lower word error rate on the male subset and 3% on the female subset if the layers in the encoder and decoder are not frozen, but the tuning is started from the last checkpoints. Moreover, we adapted our base model on the full L2 Arctic dataset of accented speech and fine-tuned it for particular speakers and male and female genders separately. The models trained on the gender subsets obtained 1-2% higher accuracy when compared to the model tuned on the whole L2 Arctic dataset. Finally, we tested the concatenation of the pretrained x-vector voice embeddings and embeddings from a conventional encoder, but its gain in accuracy is not significant.