Do you want to publish a course? Click here

A photo-evaporative gap in the closest planet forming disc

276   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dispersal of the circumstellar discs of dust and gas surrounding young low- mass stars has important implications for the formation of planetary systems. Photo- evaporation from energetic radiation from the central object is thought to drive the dispersal in the majority of discs, by creating a gap which disconnects the outer from the inner regions of the disc and then disperses the outer disc from the inside-out, while the inner disc keeps draining viscously onto the star. In this Letter we show that the disc around TW Hya, the closest protoplanetary disc to Earth, may be the first object where a photoevaporative gap has been imaged around the time at which it is being created. Indeed the detected gap in the ALMA images is consistent with the expectations of X-ray photoevaporation models, thus not requiring the presence of a planet. The photoevaporation model is also consistent with a broad range of properties of the TW Hya system, e.g. accretion rate and the location of the gap at the onset of dispersal. We show that the central, unresolved 870 {mu}m continuum source might be produced by free free emission from the gas and/or residual dust inside the gap.



rate research

Read More

Recent mm-wavelength surveys performed with the Atacama Large Millimeter Array (ALMA) have revealed protoplanetary discs characterized by rings and gaps. A possible explanation for the origin of such rings is the tidal interaction with an unseen planetary companion. The protoplanetary disc around DS Tau shows a wide gap in the ALMA observation at 1.3 mm. We construct a hydrodynamical model for the dust continuum observed by ALMA assuming the observed gap is carved by a planet between one and five Jupiter masses. We fit the shape of the radial intensity profile along the disc major axis varying the planet mass, the dust disc mass, and the evolution time of the system. The best fitting model is obtained for a planet with $M_{rm p}=3.5,M_{rm Jup}$ and a disc with $M_{rm dust}= 9.6cdot10^{-5},M_{odot}$. Starting from this result, we also compute the expected signature of the planet in the gas kinematics, as traced by CO emission. We find that such a signature (in the form of a kink in the channel maps) could be observed by ALMA with a velocity resolution between $0.2-0.5,rm{kms}^{-1}$ and a beam size between 30 and 50 mas.
We still do not understand how planets form, or why extra-solar planetary systems are so different from our own solar system. But the last few years have dramatically changed our view of the discs of gas and dust around young stars. Observations with the Atacama Large Millimeter/submillimeter Array (ALMA) and extreme adaptive-optics systems have revealed that most --- if not all --- discs contain substructure, including rings and gaps, spirals, azimuthal dust concentrations, and shadows cast by misaligned inner discs. These features have been interpreted as signatures of newborn protoplanets, but the exact origin is unknown. Here we report the kinematic detection of a few Jupiter-mass planet located in a gas and dust gap at 130 au in the disc surrounding the young star HD 97048. An embedded planet can explain both the disturbed Keplerian flow of the gas, detected in CO lines, and the gap detected in the dust disc at the same radius. While gaps appear to be a common feature in protoplanetary discs, we present a direct correspondence between a planet and a dust gap, indicating that at least some gaps are the result of planet-disc interactions.
103 - Zhaohuan Zhu 2018
We carry out three-dimensional hydrodynamical simulations to study planet-disc interactions for inclined high mass planets, focusing on the discs secular evolution induced by the planet. We find that, when the planet is massive enough and the induced gap is deep enough, the disc inside the planets orbit breaks from the outer disc. The inner and outer discs precess around the systems total angular momentum vector independently at different precession rates, which causes significant disc misalignment. We derive the analytical formulae, which are also verified numerically, for: 1) the relationship between the planet mass and the depth/width of the induced gap, 2) the migration and inclination damping rates for massive inclined planets, and 3) the condition under which the inner and outer discs can break and undergo differential precession. Then, we carry out Monte-Carlo radiative transfer calculations for the simulated broken discs. Both disc shadowing in near-IR images and gas kinematics probed by molecular lines (e.g. from ALMA) can reveal the misaligned inner disc. The relationship between the rotation rate of the disc shadow and the precession rate of the inner disc is also provided. Using our disc breaking condition, we conclude that the disc shadowing due to misaligned discs should be accompanied by deep gaseous gaps (e.g. in Pre/Transitional discs). This scenario naturally explains both the disc shadowing and deep gaps in several systems (e.g. HD 100453, DoAr 44, AA Tau, HD 143006) and these systems should be the prime targets for searching young massive planets ($>M_J$) in discs.
147 - S.-J. Paardekooper 2009
One class of protoplanetary disc models, the X-wind model, predicts strongly subkeplerian orbital gas velocities, a configuration that can be sustained by magnetic tension. We investigate disc-planet interactions in these subkeplerian discs, focusing on orbital migration for low-mass planets and gap formation for high-mass planets. We use linear calculations and nonlinear hydrodynamical simulations to measure the torque and look at gap formation. In both cases, the subkeplerian nature of the disc is treated as a fixed external constraint. We show that, depending on the degree to which the disc is subkeplerian, the torque on low-mass planets varies between the usual Type I torque and the one-sided outer Lindblad torque, which is also negative but an order of magnitude stronger. In strongly subkeplerian discs, corotation effects can be ignored, making migration fast and inward. Gap formation near the planets orbit is more difficult in such discs, since there are no resonances close to the planet accommodating angular momentum transport. In stead, the location of the gap is shifted inwards with respect to the planet, leaving the planet on the outside of a surface density depression. Depending on the degree to which a protoplanetary disc is subkeplerian, disc-planet interactions can be very different from the usual Keplerian picture, making these discs in general more hazardous for young planets.
105 - Ruobing Dong 2016
High contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combing 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered light images. Quantitatively, we obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap $h$, and to constrain the quantity $M_{rm p}^2/alpha$, where $M_{rm p}$ is the mass of the gap-opening planet and $alpha$ characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming $alpha=10^{-3}$, the derived planet mass in all cases are roughly between 0.1-1 $M_{rm J}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا