No Arabic abstract
One class of protoplanetary disc models, the X-wind model, predicts strongly subkeplerian orbital gas velocities, a configuration that can be sustained by magnetic tension. We investigate disc-planet interactions in these subkeplerian discs, focusing on orbital migration for low-mass planets and gap formation for high-mass planets. We use linear calculations and nonlinear hydrodynamical simulations to measure the torque and look at gap formation. In both cases, the subkeplerian nature of the disc is treated as a fixed external constraint. We show that, depending on the degree to which the disc is subkeplerian, the torque on low-mass planets varies between the usual Type I torque and the one-sided outer Lindblad torque, which is also negative but an order of magnitude stronger. In strongly subkeplerian discs, corotation effects can be ignored, making migration fast and inward. Gap formation near the planets orbit is more difficult in such discs, since there are no resonances close to the planet accommodating angular momentum transport. In stead, the location of the gap is shifted inwards with respect to the planet, leaving the planet on the outside of a surface density depression. Depending on the degree to which a protoplanetary disc is subkeplerian, disc-planet interactions can be very different from the usual Keplerian picture, making these discs in general more hazardous for young planets.
The gravitational interaction between a protoplanetary disc and planetary sized bodies that form within it leads to the exchange of angular momentum, resulting in migration of the planets and possible gap formation in the disc for more massive planets. In this article, we review the basic theory of disc-planet interactions, and discuss the results of recent numerical simulations of planets embedded in protoplanetary discs. We consider the migration of low mass planets and recent developments in our understanding of so-called type I migration when a fuller treatment of the disc thermodynamics is included. We discuss the runaway migration of intermediate mass planets (so-called type III migration), and the migration of giant planets (type II migration) and the associated gap formation in the disc. The availability of high performance computing facilities has enabled global simulations of magnetised, turbulent discs to be computed, and we discuss recent results for both low and high mass planets embedded in such discs.
We study the stability of gaps opened by a giant planet in a self-gravitating protoplanetary disc. We find a linear instability associated with both the self-gravity of the disc and local vortensity maxima which coincide with gap edges. For our models, these edge modes develop and extend to twice the orbital radius of a Saturn mass planet in discs with disc-to-star mass ratio >0.06, corresponding to a Toomre Q < 1.5 at the outer disc boundary. Unlike the local vortex-forming instabilities associated with gap edges in weakly or non-self-gravitating low viscosity discs, the edge modes are global and exist only in sufficiently massive discs, but for the typical viscosity values adopted for protoplanetary discs. Analytic modelling and linear calculations show edge modes may be interpreted as a localised disturbance associated with a gap edge inducing activity in the extended disc, through the launching of density waves excited at Lindblad resonances. Nonlinear hydrodynamic simulations are performed to investigate the evolution of edge modes in disc-planet systems. The form and growth rates of unstable modes are consistent with linear theory. Their dependence on viscosity and gravitational softening is also explored. We also performed a first study of the effect of edge modes on planetary migration. We found that if edge modes develop, then the average disc-on-planet torque becomes more positive with increasing disc mass. In simulations where the planet was allowed to migrate, although a fast type III migration could be seen that was similar to that seen in non-self-gravitating discs, we found that it was possible for the planet to interact gravitationally with the spiral arms associated with an edge mode and that this could result in the planet being scattered outwards. Thus orbital migration is likely to be complex and non monotonic in massive discs of the type we consider.
Current theories on planetary formation establish that giant planet formation should be contextual to their quick migration towards the central star due to the protoplanets-disc interactions on a timescale of the order of $10^5$ years, for objects of nearly 10 terrestrial masses. Such a timescale should be smaller by an order of magnitude than that of gas accretion onto the protoplanet during the hierarchical growing-up of protoplanets by collisions with other minor objects. These arguments have recently been analysed using N-body and/or fluid-dynamics codes or a mixing of them. In this work, inviscid 2D simulations are performed, using the SPH method, to study the migration of one protoplanet, to evaluate the effectiveness of the accretion disc in the protoplanet dragging towards the central star, as a function of the mass of the planet itself, of disc tangential kinematics. To this purpose, the SPH scheme is considered suitable to study the roles of turbulence, kinematic and boundary conditions, due to its intrinsic advective turbulence, especially in 2D and in 3D codes. Simulations are performed both in disc sub-Keplerian and in Keplerian kinematic conditions as a parameter study of protoplanetary migration if moderate and consistent deviations from Keplerian Kinematics occur. Our results show migration times of a few orbital periods for Earth-like planets in sub-Keplerian conditions, while for Jupiter-like planets estimates give that about $10^4$ orbital periods are needed to half the orbital size. Timescales of planet migration are strongly dependent on the relative position of the planet with respect to the shock region near the centrifugal barrier of the disc flow.
We now have several observational examples of misaligned broken protoplanetary discs, where the disc inner regions are strongly misaligned with respect to the outer disc. Current models suggest that this disc structure can be generated with an internal misaligned companion (stellar or planetary), but the occurrence rate of these currently unobserved companions remains unknown. Here we explore whether a strong misalignment between the inner and outer disc can be formed without such a companion. We consider a disc that has an existing gap --- essentially separating the disc into two regions --- and use a flyby to disturb the discs, leading to a misalignment. Despite considering the most optimistic parameters for this scenario, we find maximum misalignments between the inner and outer disc of $sim$45$^{circ}$ and that these misalignments are short-lived. We thus conclude that the currently observed misaligned discs must harbour internal, misaligned companions.
In this article we present results from three on-going projects related to the formation of protoplanets in protostellar discs. We present the results of simulations that model the interaction between embedded protoplanets and disc models undergoing MHD turbulence. We review the similarities and differences that arise when the disc is turbulent as opposed to laminar (but viscous), and present the first results of simulations that examine the tidal interaction between low mass protoplanets and turbulent discs. We describe the results of simulations of Jovian mass protoplanets forming in circumbinary discs, and discuss the range of possible outcomes that arise in hydrodynamic simulations. Finally, we report on some preliminary simulations of three protoplanets of Jovian mass that form approximately coevally within a protostellar disc. We describe the conditions under which such a system can form a stable three planet resonance.