Do you want to publish a course? Click here

Angular dependence of electron spin resonance for detecting quadrupolar liquid state of frustrated spin chains

50   0   0.0 ( 0 )
 Added by Shunsuke Furuya
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin nematic phase is a phase of frustrated quantum magnets with a quadrupolar order of electron spins. Since the spin nematic order is usually masked in experimentally accessible quantities, it is important to develop a methodology for detecting the spin nematic order experimentally. In this paper we propose a convenient method for detecting quasi-long-range spin nematic correlations of a quadrupolar Tomonaga-Luttinger liquid state of $S=1/2$ frustrated ferromagnetic spin chain compounds, using electron spin resonance (ESR). We focus on linewidth of a so-called paramagnetic resonance peak in ESR absorption spectrum. We show that a characteristic angular dependence of the linewidth on the direction of magnetic field arises in the spin nematic phase. Measurments of the angular dependence give a signature of the quadrupolar Tomonaga-Luttinger liquid state. In our method we change only the direction of the magnetic field, keeping the magnitude of the magnetic field and the temperature. Therefore, our method is advantageous for investigating the one-dimensional quadrupolar liquid phase that usually occupies only a narrow region of the phase diagram.



rate research

Read More

Quasiparticles of the Heisenberg spin-1/2 chain - spinons - represent the best experimentally accessible example of fractionalized excitations known to date. Dynamic spin response of the spin chain is typically dominated by the broad multi-spinon continuum that often masks subtle features, such as edge singularities, induced by the interaction between spinons. This, however, is not the case in the small momentum region of the magnetized spin chain where strong interaction between spinons leads to {em qualitative} changes to the response. Here we report experimental verification of the recently predicted collective modes of spinons in a model material K$_2$CuSO$_4$Br$_2$ by means of the electron spin resonance (ESR). We exploit the unique feature of the material - the uniform Dzyaloshinskii-Moriya interaction between chains spins - in order to access small momentum regime of the dynamic spin susceptibility. By measuring interaction-induced splitting between the two components of the ESR doublet we directly determine the magnitude of the marginally irrelevant backscattering interaction between spinons for the first time. We find it to be in an excellent agreement with the predictions of the effective field theory. Our results point out an intriguing similarity between the one-dimensional interacting liquid of neutral spinons and the Landau Fermi liquid of electrons.
We study states with spontaneous spin current, emerging in frustrated antiferromagnetic spin-$S$ chains subject to a strong external magnetic field. As a numerical tool, we use a non-Abelian symmetry realization of the density matrix renormalization group. The field dependence of the order parameter and the critical exponents are presented for zigzag chains with S=1/2, 1, 3/2, and 2.
The low-dimensional s=1/2 compound (NO)[Cu(NO3)3] has recently been suggested to follow the Nersesyan-Tsvelik model of coupled spin chains. Such a system shows unbound spinon excitations and a resonating valence bond ground state due spin frustration. Our Raman scattering study demonstrates phonon anomalies as well as the suppression of a broad magnetic scattering continuum for temperatures below a characteristic temperature, T<T*=100K. We interpret these effects as evidence for a dynamical interplay of spin and lattice degrees of freedom that might lead to a further transition into a dimerized or structurally distorted phase at lower temperatures.
Collective behaviour of electrons, frustration induced quantum fluctuations and entanglement in quantum materials underlie some of the emergent quantum phenomena with exotic quasi-particle excitations that are highly relevant for technological applications. Frustrated quantum materials offer an exciting venue to realize highly entangled quantum states with fractional excitations. Herein, we present our thermodynamic and muon spin relaxation measurements on the recently synthesized frustrated antiferromagnet Li4CuTeO6, in which Cu2+ ions (S = 1/2) constitute a disordered triangular-lattice in the crystallographic ab-plane. Our experiments detect neither long-range magnetic ordering nor spin freezing down to a temperature of 1.55 K despite the presence of strong antiferromagnetic interaction between Cu2+ moments leading to a large Curie-Weiss temperature of -163 K. Muon spin relaxation results demonstrate a dynamic liquid-like quantum state. The temperature and magnetic field scaling of magnetization and specific heat reveal a data collapse pointing towards the presence of random-singlets within a disorder-driven correlated and dynamic ground-state in this frustrated antiferromagnet.
167 - M. Pregelj , O. Zaharko , M. Herak 2016
We investigate the spin-stripe mechanism responsible for the peculiar nanometer modulation of the incommensurate magnetic order that emerges between the vector-chiral and the spin-density-wave phase in the frustrated zigzag spin-1/2 chain compound $beta$-TeVO$_4$. A combination of magnetic-torque, neutron-diffraction and spherical-neutron-polarimetry measurements is employed to determine the complex magnetic structures of all three ordered phases. Based on these results, we develop a simple phenomenological model, which exposes the exchange anisotropy as the key ingredient for the spin-stripe formation in frustrated spin systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا