Coarsening dynamics theory has successfully described the equilibration of a broad class of systems.By studying the relaxation of a periodic array of microcondensates immersed in a Fermi gas which can mediate long-range spin interactions to simulate frustrated classical magnets, we show that coarsening dynamics can be suppressed by geometrical frustration. The system is found to eventually approach a metastable state which is robust against random field noise and characterized by finite correlation lengths with the emergence of topologically stable Z2 vortices. We find universal scaling laws with no thermal-equilibrium analog that relate the correlation lengths and the number of vortices to the degree of frustration in the system.
We use kinetic theory to model the dynamics of a small Bose condensed cloud of heavy particles moving through a larger degenerate Fermi gas of light particles. Varying the Bose-Fermi interaction, we find a crossover between bulk and surface dominated regimes -- where scattering occurs throughout the Bose cloud, or solely on the surface. We calculate the damping and frequency shift of the dipole mode in a harmonic trap as a function of the magnetic field controlling an inter-species Feshbach resonance. We find excellent agreement between our stochastic model and the experimental studies of Cs-Li mixtures.
Although there is a broad consensus on the fact that critical behavior in stacked triangular Heisenberg antiferromagnets --an example of frustrated magnets with competing interactions-- is described by a Landau-Ginzburg-Wilson Hamiltonian with O(3)$times$O(2) symmetry, the nature of the phase transition in three dimensions is still debated. We show that spin-one Bose gases provide us with a simulator of the O(3)$times$O(2) model. Using a renormalization-group approach, we argue that the transition is weakly first order and shows pseudoscaling behavior, and give estimates of the pseudocritical exponent $ u$ in $^{87}$Rb, $^{41}$K and $^7$Li atom gases which can be tested experimentally.
We investigate collective excitations of density fluctuations and a dynamic density structure factor in a mixture of Bose and Fermi gases in a normal phase. With decreasing temperature, we find that the frequency of the collective excitation deviates from that of the hydrodynamic sound mode. Even at temperature much lower than the Fermi temperature, the collective mode frequency does not reach the collisionless limit analogous to zero sound in a Fermi gas, because of collisions between bosons and fermions.
We consider a Bose-Fermi mixture in the molecular limit of the attractive interaction between fermions and bosons. For a boson density smaller or equal to the fermion density, we show analytically how a T-matrix approach for the constituent bosons and fermions recovers the expected physical limit of a Fermi-Fermi mixture of molecules and atoms. In this limit, we derive simple expressions for the self-energies, the momentum distribution function, and the chemical potentials. By extending these equations to a trapped system, we determine how to tailor the experimental parameters of a Bose-Fermi mixture in order to enhance the indirect Pauli exclusion effect on the boson momentum distribution function. For the homogeneous system, we present finally a Diffusion Monte Carlo simulation which confirms the occurrence of such a peculiar effect.
Cooper pairing caused by an induced interaction represents a paradigm in our description of fermionic superfluidity. Here, we present a strong coupling theory for the critical temperature of $p$-wave pairing between spin polarised fermions immersed in a Bose-Einstein condensate. The fermions interact via the exchange of phonons in the condensate, and our self-consistent theory takes into account the full frequency/momentum dependence of the resulting induced interaction. We demonstrate that both retardation and self-energy effects are important for obtaining a reliable value of the critical temperature. Focusing on experimentally relevant systems, we perform a systematic analysis varying the boson-boson and boson-fermion interaction strength as well as their masses, and identify the most suitable system for realising a $p$-wave superfluid. Our results show that such a superfluid indeed is experimentally within reach using light bosons mixed with heavy fermions.