Do you want to publish a course? Click here

Simulating frustrated magnetism with spinor Bose gases

210   0   0.0 ( 0 )
 Added by Thibault Debelhoir
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although there is a broad consensus on the fact that critical behavior in stacked triangular Heisenberg antiferromagnets --an example of frustrated magnets with competing interactions-- is described by a Landau-Ginzburg-Wilson Hamiltonian with O(3)$times$O(2) symmetry, the nature of the phase transition in three dimensions is still debated. We show that spin-one Bose gases provide us with a simulator of the O(3)$times$O(2) model. Using a renormalization-group approach, we argue that the transition is weakly first order and shows pseudoscaling behavior, and give estimates of the pseudocritical exponent $ u$ in $^{87}$Rb, $^{41}$K and $^7$Li atom gases which can be tested experimentally.



rate research

Read More

401 - T. Debelhoir , N. Dupuis 2016
We show that phase transitions in spin-one Bose gases and stacked triangular Heisenberg antiferromagnets -- an example of frustrated magnets with competing interactions -- are described by the same Landau-Ginzburg-Wilson Hamiltonian with O(3)$times$O(2) symmetry. In agreement with previous nonperturbative-renormalization-group studies of the three-dimensional O(3)$times$O(2) model, we find that the transition from the normal phase to the superfluid ferromagnetic phase in a spin-one Bose gas is weakly first order and shows pseudoscaling behavior. The (nonuniversal) pseudoscaling exponent $ u$ is fully determined by the scattering lengths $a_0$ and $a_2$. We provide estimates of $ u$ in $^{87}$Rb, $^{41}$K and $^7$Li atom gases which can be tested experimentally. We argue that pseudoscaling comes from either a crossover phenomena due to proximity of the O(6) Wilson-Fisher fixed point ($^{87}$Rb and $^{41}$K) or the existence of two unphysical fixed points (with complex coordinates) which slow down the RG flow ($^7$Li). These unphysical fixed points are a remnant of the chiral and antichiral fixed points that exist in the O($N$)$times$O(2) model when $N$ is larger than $N_csimeq 5.3$ (the transition being then second order and controlled by the chiral fixed point). Finally, we discuss a O(2)$times$O(2) lattice model and show that our results, even though we find the transition to be first order, are compatible with Monte Carlo simulations yielding an apparent second-order transition.
Quantum antiferromagnets with geometrical frustration exhibit rich many-body physics but are hard to simulate by means of classical computers. Although quantum-simulation studies for analyzing such systems are thus desirable, they are still limited to high temperature regions, where interesting quantum effects are smeared out. Here, we propose a feasible protocol to perform analog quantum simulation of frustrated antiferromagnetism with strong quantum fluctuations by using ultracold Bose gases in optical lattices at negative absolute temperatures. Specifically, we show from numerical simulations that the time evolution of a negative-temperature state subjected to a slow sweep of the hopping energy simulates quantum phase transitions of a frustrated Bose-Hubbard model with sign-inverted hoppings. Moreover, we quantitatively predict the phase boundary between the frustrated superfluid and Mott-insulator phases for triangular lattices with hopping anisotropy, which serves as a benchmark for quantum simulation.
Dynamical fermionization refers to the phenomenon in Tonks-Girardeau (TG) gases where, upon release from harmonic confinement, the gass momentum density profile evolves asymptotically to that of an ideal Fermi gas in the initial trap. This phenomenon has been demonstrated theoretically in hardcore and anyonic TG gases, and recently experimentally observed in a strongly interacting Bose gas. We extend this study to a one dimensional (1D) spinor gas of arbitrary spin in the strongly interacting regime, and analytically prove that the total momentum distribution after the harmonic trap is turned off approaches that of a spinless ideal Fermi gas, while the asymptotic momentum distribution of each spin component takes the same shape of the initial real space density profile of that spin component. Our work demonstrates the rich physics arising from the interplay between the spin and the charge degrees of freedom in a spinor system.
We show how density dependent gauge potentials can be induced in dilute gases of ultracold atoms using light-matter interactions. We study the effect of the resulting interacting gauge theory and show how it gives rise to novel topological states in the ultracold gas. We find in particular that the onset of persistent currents in a ring geometry is governed by a critical number of particles. The density-dependent gauge potential is also found to support chiral solitons in a quasi-one-dimensional ultracold Bose gas.
Coarsening dynamics theory has successfully described the equilibration of a broad class of systems.By studying the relaxation of a periodic array of microcondensates immersed in a Fermi gas which can mediate long-range spin interactions to simulate frustrated classical magnets, we show that coarsening dynamics can be suppressed by geometrical frustration. The system is found to eventually approach a metastable state which is robust against random field noise and characterized by finite correlation lengths with the emergence of topologically stable Z2 vortices. We find universal scaling laws with no thermal-equilibrium analog that relate the correlation lengths and the number of vortices to the degree of frustration in the system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا