Do you want to publish a course? Click here

$8pi$-periodic dissipationless ac Josephson effect on a quantum spin-Hall edge via a Quantum magnetic impurity

128   0   0.0 ( 0 )
 Added by Hoi-Yin Hui
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Time-reversal invariance places strong constraints on the properties of the quantum spin Hall edge. One such restriction is the inevitability of dissipation in a Josephson junction between two superconductors formed on such an edge without the presence of interaction. Interactions and spin-conservation breaking are key ingredients for the realization of dissipationless ac Josephson effect on such quantum spin Hall edges. We present a simple quantum impurity model that allows to create a dissipationless fractional Josephson effect on a quantum spin Hall edge. We then use this model to substantiate a general argument that shows that any such non-dissipative Josephson effect must necessarily by $8pi$-periodic.

rate research

Read More

142 - W. Y. Deng , Y. J. Ren , Z. X. Lin 2016
We develop an analytical theory of the low-frequency $ac$ quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the $ac$ QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is conserved, the integer-quantized $ac$ spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological $ac$ spin current by electrical means.
We report on the fate of the quantum Hall effect in graphene under strong laser illumination. By using Floquet theory combined with both a low energy description and full tight-binding models, we clarify the selection rules, the quasienergy band structure, as well as their connection with the two-terminal and multi-terminal conductance in a device setup as relevant for experiments. We show that the well-known dynamical gaps that appear in the Floquet spectrum at $pm,hbarOmega/2$ lead to a switch-off of the quantum Hall edge transport for different edge terminations except for the armchair one, where two terms cancel out exactly. More interestingly, we show that near the Dirac point changing the laser polarization (circular right or circular left) controls the Hall conductance, by allowing to switch it on or off, or even by flipping its sign, thereby reversing the chirality of the edge states. This might lead to new avenues to fully control topologically protected transport.
We study the transport properties of a voltage-biased Josephson junction where the BCS superconducting leads are coupled via the edges of a quantum Hall sample. In this scenario, an out of equilibrium Josephson current develops, which is numerically studied within the Floquet-Keldysh Greens function formalism. We particularly focus on the time-averaged current as a function of both the bias voltage and the magnetic flux threading the sample and analyze the resonant multiple Andreev reflection processes that lead to an enhancement of the quasiparticle transmission. We find that a full tomography of the dc current in the voltage-flux plane allows for a complete spectroscopy of the one-way edge modes and could be used as a hallmark of chiral edge mediated transport in these hybrid devices.
84 - R. Battilomo , N. Scopigno , 2018
We discuss the transport properties of a quantum spin-Hall insulator with sizable Rashba spin-orbit coupling in a disk geometry. The presence of topologically protected helical edge states allows for the control and manipulation of spin polarized currents: when ferromagnetic leads are coupled to the quantum spin-Hall device, the ballistic conductance is modulated by the Rashba strength. Therefore, by tuning the Rashba interaction via an all-electric gating, it is possible to control the spin polarization of injected electrons.
We propose and analyse a scheme for performing a long-range entangling gate for qubits encoded in electron spins trapped in semiconductor quantum dots. Our coupling makes use of an electrostatic interaction between the state-dependent charge configurations of a singlet-triplet qubit and the edge modes of a quantum Hall droplet. We show that distant singlet-triplet qubits can be selectively coupled, with gate times that can be much shorter than qubit dephasing times and faster than decoherence due to coupling to the edge modes. Based on parameters from recent experiments, we argue that fidelities above 99% could in principle be achieved for a two-qubit entangling gate taking as little as 20 ns.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا