No Arabic abstract
Ground Level Enhancements (GLEs) of cosmic-ray intensity occur, on average, once a year. Due to their rareness, studying the solar sources of GLEs is especially important to approach understanding their origin. The SOL2001-12-26 eruptive-flare event responsible for GLE63 seems to be challenging in some aspects. Deficient observations limited its understanding. Analysis of extra observations found for this event provided new results shading light on the flare. This article addresses the observations of this flare with the Siberian Solar Radio Telescope (SSRT). Taking advantage of its instrumental characteristics, we analyze the detailed SSRT observations of a major long-duration flare at 5.7 GHz without cleaning the images. The analysis confirms that the source of GLE63 was associated with an event in active region 9742 that comprised two flares. The first flare (04:30-05:03 UT) reached a GOES importance of about M1.6. Two microwave sources were observed, whose brightness temperatures at 5.7 GHz exceeded 10 MK. The main flare, up to the M7.1 importance, started at 05:04 UT, and occurred in strong magnetic fields. The observed microwave sources reached about 250 MK. They were not static. Having appeared on the weaker-field periphery of the active region, the microwave sources moved toward each other nearly along the magnetic neutral line, approaching a stronger-field core of the active region, and then moved away from the neutral line like expanding ribbons. These motions rule out an association of the non-thermal microwave sources with a single flaring loop.
Analysis of the observations of the SOL2001-12-26 event related to ground-level-event GLE63, including microwave spectra and images from NoRH at 17 and 34 GHz, SSRT at 5.7 GHz, and TRACE in 1600 AA has led to the following results. A flare ribbon overlapped with the sunspot umbra, which is typical of large particle events. Atypical were: i) long duration of the flare of more than one hour; ii) moderate intensity of a microwave burst, about $10^4$ sfu; iii) low peak frequency of the gyrosynchrotron spectrum, around 6 GHz; and its insensitivity to the flux increase by more than one order of magnitude. This was accompanied by a nearly constant ratio of the flux emitted by the volume in the high-frequency part of the spectrum to its elevated low-frequency part determined by the area of the source. With the self-similarity of the spectrum, a similarity was observed between the moving microwave sources and the brightest parts of the flare ribbons in 1600 AA. Comparison of the 17 GHz and 1600 AA images has confirmed that the microwave sources were associated with multiple flare loops, whose footpoints appeared in ultraviolet as intermittent bright kernels. To understand the properties of the event, we simulated its microwave emission using a system of several homogeneous gyrosynchrotron sources above the ribbons. The scatter between the spectra and sizes of the individual sources is determined by the inhomogeneity of the magnetic field within the ribbons. The microwave flux is mainly governed by the magnetic flux passing through the ribbons and the sources. An apparent simplicity of microwave structures is caused by a poorer spatial resolution and dynamic range of the microwave imaging. The results indicate that microwave manifestations of accelerated electrons correspond to the structures observed in thermal emissions, as well-known models predict.
The SOL2001-12-26 moderate solar eruptive event (GOES importance M7.1, microwaves up to 4000 sfu at 9.4 GHz, CME speed 1446 km/s) produced strong fluxes of solar energetic particles and ground-level enhancement of cosmic-ray intensity (GLE63). To find a possible reason for the atypically high proton outcome of this event, we study multi-wavelength images and dynamic radio spectra and quantitatively reconcile the findings with each other. An additional eruption probably occurred in the same active region about half an hour before the main eruption. The latter produced two blast-wave-like shocks during the impulsive phase. The two shock waves eventually merged around the radial direction into a single shock traced up to $25R_odot$ as a halo ahead of the expanding CME body, in agreement with an interplanetary Type II event recorded by the Radio and Plasma Wave Investigation (WAVES) experiment on the Wind spacecraft. The shape and kinematics of the halo indicate an intermediate regime of the shock between the blast wave and bow shock at these distances. The results show that i) the shock wave appeared during the flare rise and could accelerate particles earlier than usually assumed; ii) the particle event could be amplified by the preceding eruption, which stretched closed structures above the developing CME, facilitated its lift-off and escape of flare-accelerated particles, enabled a higher CME speed and stronger shock ahead; iii) escape of flare-accelerated particles could be additionally facilitated by reconnection of the flux rope, where they were trapped, with a large coronal hole; iv) the first eruption supplied a rich seed population accelerated by a trailing shock wave.
The solar group at the National Astronomical Observatory of Japan is conducting synoptic solar observations with the Solar Flare Telescope. While it is a part of a long-term solar monitoring, contributing to the study of solar dynamo governing solar activity cycles, it is also an attempt at contributing to space weather research. The observations include imaging with filters for H$alpha$, Ca K, G-band, and continuum, and spectropolarimetry at the wavelength bands including the He I 1083.0 nm / Si I 1082.7 nm and the Fe I 1564.8 nm lines. Data for the brightness, Doppler signal, and magnetic field information of the photosphere and the chromosphere are obtained. In addition to monitoring dynamic phenomena like flares and filament eruptions, we can track the evolution of the magnetic fields that drive them on the basis of these data. Furthermore, the magnetic field in solar filaments, which develops into a part of the interplanetary magnetic cloud after their eruption and occasionally hits the Earth, can be inferred in its pre-eruption configuration. Such observations beyond mere classical monitoring of the Sun will hereafter become crucially important from the viewpoint of the prediction of space weather phenomena. The current synoptic observations with the Solar Flare Telescope is considered to be a pioneering one for future synoptic observations of the Sun with advanced instruments.
The solar X-ray irradiance is significantly heightened during the course of a solar flare, which can cause radio blackouts due to ionization of the atoms in the ionosphere. As the duration of a solar flare is not related to the size of that flare, it is not directly clear how long those blackouts can persist. Using a random forest regression model trained on data taken from X-ray light curves, we have developed a direct forecasting method that predicts how long the event will remain above background levels. We test this on a large collection of flares observed with GOES-15, and show that it generally outperforms simple linear regression. This forecast is computationally light enough to be performed in real time, allowing for the prediction to be made during the course of a flare.
A small flare ribbon above a sunspot umbra in active region 12205 was observed on November 7, 2014, at 12:00 UT in the blue imaging channel of the 1.5 m GREGOR telescope, using a 1 A Ca II H interference filter. Context observations from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO), the Solar Optical Telescope (SOT) onboard Hinode, and the Interface Region Imaging Spectrograph (IRIS) show that this ribbon is part of a larger one that extends through the neighboring positive polarities and also participates in several other flares within the active region. We reconstructed a time series of 140 seconds of Ca II H images by means of the multiframe blind deconvolution method, which resulted in spatial and temporal resolutions of 0.1 arcsec and 1 s. Light curves and horizontal velocities of small-scale bright knots in the observed flare ribbon were measured. Some knots are stationary, but three move along the ribbon with speeds of 7-11 km/s. Two of them move in the opposite direction and exhibit highly correlated intensity changes, which provides evidence of a slipping reconnection at small spatial scales.