Do you want to publish a course? Click here

Nesting statistics in the $O(n)$ loop model on random maps of arbitrary topologies

165   0   0.0 ( 0 )
 Added by Elba Garcia-Failde
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We pursue the analysis of nesting statistics in the $O(n)$ loop model on random maps, initiated for maps with the topology of disks and cylinders in math-ph/1605.02239, here for arbitrary topologies. For this purpose we rely on the topological recursion results of math-ph/0910.5896 and math-ph/1303.5808 for the enumeration of maps in the $O(n)$ model. We characterize the generating series of maps of genus $g$ with $k$ marked points and $k$ boundaries and realizing a fixed nesting graph. These generating series are amenable to explicit computations in the loop model with bending energy on triangulations, and we characterize their behavior at criticality in the dense and in the dilute phase.



rate research

Read More

We consider the O(n) loop model on tetravalent maps and show how to rephrase it into a model of bipartite maps without loops. This follows from a combinatorial decomposition that consists in cutting the O(n) model configurations along their loops so that each elementary piece is a map that may have arbitrary even face degrees. In the induced statistics, these maps are drawn according to a Boltzmann distribution whose parameters (the face weights) are determined by a fixed point condition. In particular, we show that the dense and dilute critical points of the O(n) model correspond to bipartite maps with large faces (i.e. whose degree distribution has a fat tail). The re-expression of the fixed point condition in terms of linear integral equations allows us to explore the phase diagram of the model. In particular, we determine this phase diagram exactly for the simplest version of the model where the loops are rigid. Several generalizations of the model are discussed.
171 - G. Borot , B. Eynard 2009
We compute the generating functions of a O(n) model (loop gas model) on a random lattice of any topology. On the disc and the cylinder, they were already known, and here we compute all the other topologies. We find that the generating functions (and the correlation functions of the lattice) obey the topological recursion, as usual in matrix models, i.e they are given by the symplectic invariants of their spectral curve.
We continue our investigation of the nested loop approach to the O(n) model on random maps, by extending it to the case where loops may visit faces of arbitrary degree. This allows to express the partition function of the O(n) loop model as a specialization of the multivariate generating function of maps with controlled face degrees, where the face weights are determined by a fixed point condition. We deduce a functional equation for the resolvent of the model, involving some ring generating function describing the immediate vicinity of the loops. When the ring generating function has a single pole, the model is amenable to a full solution. Physically, such situation is realized upon considering loops visiting triangles only and further weighting these loops by some local bending energy. Our model interpolates between the two previously solved cases of triangulations without bending energy and quadrangulations with rigid loops. We analyze the phase diagram of our model in details and derive in particular the location of its non-generic critical points, which are in the universality classes of the dense and dilute O(n) model coupled to 2D quantum gravity. Similar techniques are also used to solve a twisting loop model on quadrangulations where loops are forced to make turns within each visited square. Along the way, we revisit the problem of maps with controlled, possibly unbounded, face degrees and give combinatorial derivations of the one-cut lemma and of the functional equation for the resolvent.
A crucial result on the celebrated Sachdev-Ye-Kitaev model is that its large $N$ limit is dominated by melonic graphs. In this letter we offer a rigorous, diagrammatic proof of that result by direct, combinatorial analysis of its Feynman graphs.
We compute the partition function of the $q$-states Potts model on a random planar lattice with $pleq q$ allowed, equally weighted colours on a connected boundary. To this end, we employ its matrix model representation in the planar limit, generalising a result by Voiculescu for the addition of random matrices to a situation beyond free probability theory. We show that the partition functions with $p$ and $q-p$ colours on the boundary are related algebraically. Finally, we investigate the phase diagram of the model when $0leq qleq 4$ and comment on the conformal field theory description of the critical points.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا