Do you want to publish a course? Click here

Combinatorial and inductive methods for the tropical maximal rank conjecture

357   0   0.0 ( 0 )
 Added by Sam Payne
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We produce new combinatorial methods for approaching the tropical maximal rank conjecture, including inductive procedures for deducing new cases of the conjecture on graphs of increasing genus from any given case. Using explicit calculations in a range of base cases, we prove this conjecture for the canonical divisor, and in a wide range of cases for m=3, extending previous results for m=2.



rate research

Read More

170 - David Jensen , Sam Payne 2018
We develop new methods to study tropicalizations of linear series and show linear independence of sections. Using these methods, we prove two new cases of the strong maximal rank conjecture for linear series of degree 25 and 26 on curves of genus 22 and 23, respectively.
67 - Ke Chen , Xin Lu , Kang Zuo 2017
We prove that a Shimura curve in the Siegel modular variety is not generically contained in the open Torelli locus as long as the rank of unitary part in its canonical Higgs bundle satisfies a numerical upper bound. As an application we show that the Coleman-Oort conjecture holds for Shimura curves associated to partial corestriction upon a suitable choice of parameters, which generalizes a construction due to Mumford.
We generalize the multiple cover formula of Y. Toda (proved by Maulik-Thomas) for counting invariants for semistable coherent sheaves on local K3 surfaces to semistable twisted sheaves over twisted local K3 surfaces. As applications we calculate the $SU(r)/zz_r$-Vafa-Witten invariants for K3 surfaces for any rank $r$ defined by Jiang for the Langlands dual group $SU(r)/zz_r$ of the gauge group $SU(r)$. We generalize and prove the S-duality conjecture of Vafa-Witten of K3 surfaces for all higher ranks based on the result of Tanaka-Thomas on the $SU(r)$-Vafa-Witten invariants.
We make a first geometric study of three varieties in $mathbb{C}^m otimes mathbb{C}^m otimes mathbb{C}^m$ (for each $m$), including the Zariski closure of the set of tight tensors, the tensors with continuous regular symmetry. Our motivation is to develop a geometric framework for Strassens Asymptotic Rank Conjecture that the asymptotic rank of any tight tensor is minimal. In particular, we determine the dimension of the set of tight tensors. We prove that this dimension equals the dimension of the set of oblique tensors, a less restrictive class introduced by Strassen.
Tropical geometry and the theory of Newton-Okounkov bodies are two methods which produce toric degenerations of an irreducible complex projective variety. Kaveh-Manon showed that the two are related. We give geometric maps between the Newton-Okounkov bodies corresponding to two adjacent maximal-dimensional prime cones in the tropicalization of $X$. Under a technical condition, we produce a natural algebraic wall-crossing map on the underlying value semigroups (of the corresponding valuations). In the case of the tropical Grassmannian $Gr(2,m)$, we prove that the algebraic wall-crossing map is the restriction of a geometric map. In an Appendix by Nathan Ilten, he explains how the geometric wall-crossing phenomenon can also be derived from the perspective of complexity-one $T$-varieties; Ilten also explains the connection to the combinatorial mutations studied by Akhtar-Coates-Galkin-Kasprzyk.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا