Do you want to publish a course? Click here

When Two-Holed Torus Graphs are Hamiltonian

228   0   0.0 ( 0 )
 Added by Dhruv Rohatgi
 Publication date 2016
  fields
and research's language is English
 Authors Dhruv Rohatgi




Ask ChatGPT about the research

Trotter and Erdos found conditions for when a directed $m times n$ grid graph on a torus is Hamiltonian. We consider the analogous graphs on a two-holed torus, and study their Hamiltonicity. We find an $mathcal{O}(n^4)$ algorithm to determine the Hamiltonicity of one of these graphs and an $mathcal{O}(log(n))$ algorithm to find the number of diagonals, which are sets of vertices that force the directions of edges in any Hamiltonian cycle. We also show that there is a periodicity pattern in the graphs Hamiltonicities if one of the sides of the grid is fixed; and we completely classify which graphs are Hamiltonian in the cases where $n=m$, $n=2$, the $m times n$ graph has $1$ diagonal, or the $frac{m}{2} times frac{n}{2}$ graph has $1$ diagonal.



rate research

Read More

We provide a computer-assisted proof that if G is any finite group of order kp, where k < 48 and p is prime, then every connected Cayley graph on G is hamiltonian (unless kp = 2). As part of the proof, it is verified that every connected Cayley graph of order less than 48 is either hamiltonian connected or hamiltonian laceable (or has valence less than three).
153 - Dave Witte Morris 2017
We show that if G is a finite group whose commutator subgroup [G,G] has order 2p, where p is an odd prime, then every connected Cayley graph on G has a hamiltonian cycle.
If the face-cycles at all the vertices in a map on a surface are of same type then the map is called semi-equivelar. There are eleven types of Archimedean tilings on the plane. All the Archimedean tilings are semi-equivelar maps. If a map $X$ on the torus is a quotient of an Archimedean tiling on the plane then the map $X$ is semi-equivelar. We show that each semi-equivelar map on the torus is a quotient of an Archimedean tiling on the plane. Vertex-transitive maps are semi-equivelar maps. We know that four types of semi-equivelar maps on the torus are always vertex-transitive and there are examples of other seven types of semi-equivelar maps which are not vertex-transitive. We show that the number of ${rm Aut}(Y)$-orbits of vertices for any semi-equivelar map $Y$ on the torus is at most six. In fact, the number of orbits is at most three except one type of semi-equivelar maps. Our bounds on the number of orbits are sharp.
113 - Andreas Blass , 2008
People usually regard algorithms as more abstract than the programs that implement them. The natural way to formalize this idea is that algorithms are equivalence classes of programs with respect to a suitable equivalence relation. We argue that no such equivalence relation exists.
221 - Hsin-Hao Lai , Ko-Wei Lih 2012
Suppose that D is an acyclic orientation of a graph G. An arc of D is called dependent if its reversal creates a directed cycle. Let m and M denote the minimum and the maximum of the number of dependent arcs over all acyclic orientations of G. We call G fully orientable if G has an acyclic orientation with exactly d dependent arcs for every d satisfying m <= d <= M. A graph G is called chordal if every cycle in G of length at least four has a chord. We show that all chordal graphs are fully orientable.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا