Do you want to publish a course? Click here

Chordal Graphs are Fully Orientable

228   0   0.0 ( 0 )
 Added by Ko-Wei Lih
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

Suppose that D is an acyclic orientation of a graph G. An arc of D is called dependent if its reversal creates a directed cycle. Let m and M denote the minimum and the maximum of the number of dependent arcs over all acyclic orientations of G. We call G fully orientable if G has an acyclic orientation with exactly d dependent arcs for every d satisfying m <= d <= M. A graph G is called chordal if every cycle in G of length at least four has a chord. We show that all chordal graphs are fully orientable.



rate research

Read More

We introduce a new subclass of chordal graphs that generalizes split graphs, which we call well-partitioned chordal graphs. Split graphs are graphs that admit a partition of the vertex set into cliques that can be arranged in a star structure, the leaves of which are of size one. Well-partitioned chordal graphs are a generalization of this concept in the following two ways. First, the cliques in the partition can be arranged in a tree structure, and second, each clique is of arbitrary size. We provide a characterization of well-partitioned chordal graphs by forbidden induced subgraphs, and give a polynomial-time algorithm that given any graph, either finds an obstruction, or outputs a partition of its vertex set that asserts that the graph is well-partitioned chordal. We demonstrate the algorithmic use of this graph class by showing that two variants of the problem of finding pairwise disjoint paths between k given pairs of vertices is in FPT parameterized by k on well-partitioned chordal graphs, while on chordal graphs, these problems are only known to be in XP. From the other end, we observe that there are problems that are polynomial-time solvable on split graphs, but become NP-complete on well-partitioned chordal graphs.
A cycle $C$ of length $k$ in graph $G$ is extendable if there is another cycle $C$ in $G$ with $V(C) subset V(C)$ and length $k+1$. A graph is cycle extendable if every non-Hamiltonian cycle is extendable. In 1990 Hendry conjectured that any Hamiltonian chordal graph (a Hamiltonian graph with no induced cycle of length greater than three) is cycle extendable, and this conjecture has been verified for Hamiltonian chordal graphs which are interval graphs, planar graphs, and split graphs. We prove that any 2-connected claw-free chordal graph is cycle extendable.
We define strongly chordal digraphs, which generalize strongly chordal graphs and chordal bipartite graphs, and are included in the class of chordal digraphs. They correspond to square 0,1 matrices that admit a simultaneous row and column permutation avoiding the {Gamma} matrix. In general, it is not clear if these digraphs can be recognized in polynomial time, and we focus on symmetric digraphs (i.e., graphs with possible loops), tournaments with possible loops, and balanced digraphs. In each of these cases we give a polynomial-time recognition algorithm and a forbidden induced subgraph characterization. We also discuss an algorithm for minimum general dominating set in strongly chordal graphs with possible loops, extending and unifying similar algorithms for strongly chordal graphs and chordal bipartite graphs.
The following question was raised by Tuza in 1990 and Erdos et al. in 1992: if every edge of an n-vertex chordal graph G is contained in a clique of size at least four, does G have a clique transversal, i.e., a set of vertices meeting all non-trivial maximal cliques, of size at most n/4? We prove that every such graph G has a clique transversal of size at most 2(n-1)/7 if n>=5, which is the best possible bound.
We study the algorithmic properties of the graph class Chordal-ke, that is, graphs that can be turned into a chordal graph by adding at most k edges or, equivalently, the class of graphs of fill-in at most k. We discover that a number of fundamental intractable optimization problems being parameterized by k admit subexponential algorithms on graphs from Chordal-ke. We identify a large class of optimization problems on Chordal-ke that admit algorithms with the typical running time 2^{O(sqrt{k}log k)}cdot n^{O(1)}. Examples of the problems from this class are finding an independent set of maximum weight, finding a feedback vertex set or an odd cycle transversal of minimum weight, or the problem of finding a maximum induced planar subgraph. On the other hand, we show that for some fundamental optimization problems, like finding an optimal graph coloring or finding a maximum clique, are FPT on Chordal-ke when parameterized by k but do not admit subexponential in k algorithms unless ETH fails. Besides subexponential time algorithms, the class of Chordal-ke graphs appears to be appealing from the perspective of kernelization (with parameter k). While it is possible to show that most of the weighted variants of optimization problems do not admit polynomial in k kernels on Chordal-ke graphs, this does not exclude the existence of Turing kernelization and kernelization for unweighted graphs. In particular, we construct a polynomial Turing kernel for Weighted Clique on Chordal-ke graphs. For (unweighted) Independent Set we design polynomial kernels on two interesting subclasses of Chordal-ke, namely, Interval-ke and Split-ke graphs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا