Do you want to publish a course? Click here

Shubnikov-de Haas quantum oscilations reveal a reconstructed Fermi surface near optimal doping in a thin film of the cuprate superconductor Pr$_{1.86}$Ce$_{0.14}$CuO$_{4pmdelta}$

64   0   0.0 ( 0 )
 Added by Nicholas Breznay
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study magnetotransport properties of the electron-doped superconductor Pr$_{2-x}$Ce$_x$CuO$_{4pmdelta}$ with $x$ = 0.14 in magnetic fields up to 92~T, and observe Shubnikov de-Haas magnetic quantum oscillations. The oscillations display a single frequency $F$=255$pm$10~T, indicating a small Fermi pocket that is $sim$~1% of the two-dimensional Brillouin zone and consistent with a Fermi surface reconstructed from the large hole-like cylinder predicted for these layered materials. Despite the low nominal doping, all electronic properties including the effective mass and Hall effect are consistent with overdoped compounds. Our study demonstrates that the exceptional chemical control afforded by high quality thin films will enable Fermi surface studies deep into the overdoped cuprate phase diagram.

rate research

Read More

82 - Xinjian Wei , Ge He , Wei Hu 2018
In this article, we studied the role of oxygen in Pr$_{2}$CuO$_{4pmdelta}$ thin films fabricated by polymer assisted deposition method. The magnetoresistance and Hall resistivity of Pr$_{2}$CuO$_{4pmdelta}$ samples were systematically investigated. It is found that with decreasing the oxygen content, the low-temperature Hall coefficient ($R_H$) and magnetoresistance change from negative to positive, similar to those with the increase of Ce-doped concentration in R$_{2-x}$Ce$_{x}$CuO$_{4}$ (R= La, Nd, Pr, Sm, Eu). In addition, $T_c$ versus $R_H$ for both Pr$_{1-x}$LaCe$_{x}$CuO$_{4}$ and Pr$_{2}$CuO$_{4pmdelta}$ samples can coincide with each other. We conclude that the doped electrons induced by the oxygen removal are responsible for the superconductivity of $T^prime$-phase parent compounds.
For both electron- and hole-doped cuprates, superconductivity appears in the vicinity of suppressed broken symmetry order, suggesting that quantum criticality plays a vital role in the physics of these systems. A confounding factor in identifying the role of quantum criticality in the electron-doped systems is the competing influence of chemical doping and oxygen stoichiometry. Using high quality thin films of Pr$_{2}$CuO$_{4pmdelta}$, we tune superconductivity and uncover the influence of quantum criticality without Ce substitution. We observe magnetic quantum oscillations that are consistent with the presence of small hole-like Fermi surface pockets, and a large mass enhancement near the suppression of superconductivity. Tuning these materials using only oxygen stoichiometry allows the observation of quantum oscillations and provides a new axis with which to explore the physics underlying the electron-doped side of the cuprate phase diagram.
We have observed Shubnikov-de Haas oscillations in FeSe. The Fermi surface deviates significantly from predictions of band-structure calculations and most likely consists of one electron and one hole thin cylinder. The carrier density is in the order of 0.01 carriers/ Fe, an order-of-magnitude smaller than predicted. Effective Fermi energies as small as 3.6 meV are estimated. These findings call for elaborate theoretical investigations incorporating both electronic correlations and orbital ordering.
We report the observation of Shubnikov-de Haas oscillations in the underdoped cuprate superconductor YBa$_2$Cu$_4$O$_8$ (Y124). For field aligned along the c-axis, the frequency of the oscillations is $660pm 30$ T, which corresponds to $sim 2.4$ % of the total area of the first Brillouin zone. The effective mass of the quasiparticles on this orbit is measured to be $2.7pm0.3$ times the free electron mass. Both the frequency and mass are comparable to those recently observed for ortho-II YBa$_2$Cu$_3$O$_{6.5}$ (Y123-II). We show that although small Fermi surface pockets may be expected from band structure calculations in Y123-II, no such pockets are predicted for Y124. Our results therefore imply that these small pockets are a generic feature of the copper oxide plane in underdoped cuprates.
The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the multi-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high resolution measurements on the structurally simpler cuprate HgBa2CuO4+d (Hg1201), which features one CuO2 plane per unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunneling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modeling of these results indicates that biaxial charge-density-wave within each CuO2 plane is responsible for the reconstruction, and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا