Do you want to publish a course? Click here

On the nature of bright compact radio sources at z>4.5

64   0   0.0 ( 0 )
 Added by Rocco Coppejans
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-redshift radio-loud quasars are used to, among other things, test the predictions of cosmological models, set constraints on black hole growth in the early universe and understand galaxy evolution. Prior to this paper, 20 extragalactic radio sources at redshifts above 4.5 have been imaged with very long baseline interferometry (VLBI). Here we report on observations of an additional ten z>4.5 sources at 1.7 and 5 GHz with the European VLBI Network (EVN), thereby increasing the number of imaged sources by 50%. Combining our newly observed sources with those from the literature, we create a substantial sample of 30 z>4.5 VLBI sources, allowing us to study the nature of these objects. Using spectral indices, variability and brightness temperatures, we conclude that of the 27 sources with sufficient information to classify, the radio emission from one source is from star formation, 13 are flat-spectrum radio quasars and 13 are steep-spectrum sources. We also argue that the steep-spectrum sources are off-axis (unbeamed) radio sources with rest-frame self-absorption peaks at or below GHz frequencies and that these sources can be classified as gigahertz peaked-spectrum (GPS) and megahertz peaked-spectrum (MPS) sources.



rate research

Read More

193 - Rocco Coppejans 2017
High-redshift quasars are important to study galaxy and active galactic nuclei (AGN) evolution, test cosmological models, and study supermassive black hole growth. Optical searches for high-redshift sources have been very successful, but radio searches are not hampered by dust obscuration and should be more effective at finding sources at even higher redshifts. Identifying high-redshift sources based on radio data is, however, not trivial. Here we report on new multi-frequency Giant Metrewave Radio Telescope (GMRT) observations of eight z>4.5 sources previously studied at high angular resolution with very long baseline interferometry (VLBI). Combining these observations with those from the literature, we construct broad-band radio spectra of all 30 z>4.5 sources that have been observed with VLBI. In the sample we found flat, steep and peaked spectra in approximately equal proportions. Despite several selection effects, we conclude that the z>4.5 VLBI (and likely also non-VLBI) sources have diverse spectra and that only about a quarter of the sources in the sample have flat spectra. Previously, the majority of high-redshift radio sources were identified based on their ultra-steep spectra (USS). Recently a new method has been proposed to identify these objects based on their megahertz-peaked spectra (MPS). Neither method would have identified more than 18% of the high-redshift sources in this sample. More effective methods are necessary to reliably identify complete samples of high-redshift sources based on radio data.
We present the results of Karl G. Jansky Very Large Array (VLA) observations to study the properties of FR0 radio galaxies, the compact radio sources associated with early-type galaxies which represent the bulk of the local radio-loud AGN population. We obtained A-array observations at 1.5, 4.5, and 7.5 GHz for 18 FR0s from the FR0CAT sample: these are sources at $z<0.05$, unresolved in the FIRST images and spectroscopically classified as low excitation galaxies (LEG). Although we reach an angular resolution of $sim$0.3 arcsec, the majority of the 18 FR0s is still unresolved. Only four objects show extended emission. Six have steep radio spectra, 11 are flat cores, while one shows an inverted spectrum. We find that 1) the ratio between core and total emission in FR0s is $sim$30 times higher than in FRI and 2) FR0s share the same properties with FRIs from the nuclear and host point of view. FR0s differ from FRIs only for the paucity of extended radio emission. Different scenarios were investigated: 1) the possibility that all FR0s are young sources eventually evolving into extended sources is ruled out by the distribution of radio sizes; 2) similarly, a time-dependent scenario, where a variation of accretion or jet launching prevents the formation of large-scales radio structures, appears to be rather implausible due to the large abundance of sub-kpc objects 3) a scenario in which FR0s are produced by mildly relativistic jets is consistent with the data but requires observations of a larger sample to be properly tested.
It is a widespread opinion that hydrogen reionization is mainly driven by primeval star-forming galaxies, with a minor role of high-z active galactic nuclei. Recent observations, however, challenge this notion, indicating a number of issues related to a galaxy-driven reionization scenario. We provide here an updated assessment of the space density of relatively faint (M1450~-22.5) AGNs at zspec~5.5 in order to improve the estimate of the photo-ionization rate contribution from accreting super massive black holes. Exploiting deep UV rest-frame ground-based spectra collected at the Very Large Telescope on the CANDELS/GOODS-South field and deep Chandra X-ray images in the CANDELS/GOODS-North and EGS areas, we find two relatively bright (M1450~-22.5) AGNs at zspec~5.5. We derive an AGN space density of Phi=1.29x10^-6 cMpc^-3 at z~5.5 and M1450~-22.5 by simply dividing their observed number by the cosmological volume in the range 5.0<z<6.1. Our estimate does not consider corrections for incompleteness, therefore it represents a lower limit, although uncertainties due to cosmic variance can still be significant. This value supports a high space density of AGNs at z>5, in contrast with previous claims mostly based on standard color selection, possibly affected by significant incompleteness. Our estimate for the AGN photo-ionization rate at z~5.5 is in agreement with the observed values at similar redshifts, which are needed to keep the intergalactic medium highly ionized. Upcoming JWST and giant ground based telescopes observations will improve the study of high-z AGNs and their contribution to the reionization of the Universe.
We present Very Large Array 7 mm continuum observations of four Ultra-Compact (UC)HII regions, observed previously at 1.3 cm, in order to investigate the nature of the compact radio sources associated with these regions. We detected a total of seven compact radio sources, four of them with thermal emission, and two compact radio sources have clear non-thermal emission. The thermal emission is consistent with the presence of an ionized envelope, either static (i.e., trapped in the gravitational radius of an associated massive star) or flowing away (i.e., a photo-evaporative flow). On the other hand, the nature of the non-thermal sources remains unclear and several possibilities are proposed. The possibility that most of these compact radio sources are photo-evaporating objects and the remaining ones more-evolved objects is consistent with previous studies on UCHII regions.
We have analysed a sample of 574 Spitzer 4.5 micron-selected galaxies with [4.5]<23 and Ks_auto>24 (AB) over the UltraVISTA ultra-deep COSMOS field. Our aim is to investigate whether these mid-IR bright, near-IR faint sources contribute significantly to the overall population of massive galaxies at redshifts z>=3. By performing a spectral energy distribution (SED) analysis using up to 30 photometric bands, we have determined that the redshift distribution of our sample peaks at redshifts z~2.5-3.0, and ~32% of the galaxies lie at z>=3. We have studied the contribution of these sources to the galaxy stellar mass function (GSMF) at high redshifts. We found that the [4.5]<23, Ks_auto>24 galaxies produce a negligible change to the GSMF previously determined for Ks_auto<24 sources at 3=<z<4, but their contribution is more important at 4=<z<5, accounting for >~50% of the galaxies with stellar masses Mst>~6 x 10^10 Msun. We also constrained the GSMF at the highest-mass end (Mst>~2 x 10^11 Msun) at z>=5. From their presence at 5=<z<6, and virtual absence at higher redshifts, we can pinpoint quite precisely the moment of appearance of the first most massive galaxies as taking place in the ~0.2 Gyr of elapsed time between z~6 and z~5. Alternatively, if very massive galaxies existed earlier in cosmic time, they should have been significantly dust-obscured to lie beyond the detection limits of current, large-area, deep near-IR surveys.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا