Do you want to publish a course? Click here

Collapse and revival of the monopole mode of a degenerate Bose gas in an isotropic harmonic trap

225   0   0.0 ( 0 )
 Added by Cameron Straatsma
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the monopole (breathing) mode of a finite temperature Bose-Einstein condensate in an isotropic harmonic trap recently developed by Lobser et al. [Nat.~Phys., textbf{11}, 1009 (2015)]. We observe a nonexponential collapse of the amplitude of the condensate oscillation followed by a partial revival. This behavior is identified as being due to beating between two eigenmodes of the system, corresponding to in-phase and out-of-phase oscillations of the condensed and noncondensed fractions of the gas. We perform finite temperature simulations of the system dynamics using the Zaremba-Nikuni-Griffin methodology [J.~Low Temp.~Phys., textbf{116}, 277 (1999)], and find good agreement with the data, thus confirming the two mode description.

rate research

Read More

62 - Jiaming Li , Ji Liu , Wen Xu 2015
We demonstrate a novel technique for cooling a degenerate Fermi gas in a crossed-beam optical dipole trap, where high-energy atoms can be selectively removed from the trap by modulating the stiffness of the trapping potential with anharmonic trapping frequencies. We measure the dependence of the cooling effect on the frequency and amplitude of the parametric modulations. It is found that the large anharmonicity along the axial trapping potential allows to generate a degenerate Fermi gas with anisotropic energy distribution, in which the cloud energy in the axial direction can be reduced to the ground state value.
We theoretically investigate excitation properties in the pseudogap regime of a trapped Fermi gas. Using a combined $T$-matrix theory with the local density approximation, we calculate strong-coupling corrections to single-particle local density of states (LDOS), as well as the single-particle local spectral weight (LSW). Starting from the superfluid phase transition temperature $T_{rm c}$, we clarify how the pseudogap structures in these quantities disappear with increasing the temperature. As in the case of a uniform Fermi gas, LDOS and LSW give different pseudogap temperatures $T^*$ and $T^{**}$ at which the pseudogap structures in these quantities completely disappear. Determining $T^*$ and $T^{**}$ over the entire BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensate) crossover region, we identify the pseudogap regime in the phase diagram with respect to the temperature and the interaction strength. We also show that the so-called back-bending peak recently observed in the photoemission spectra by JILA group may be explained as an effect of pseudogap phenomenon in the trap center. Since strong pairing fluctuations, spatial inhomogeneity, and finite temperatures, are important keys in considering real cold Fermi gases, our results would be useful for clarifying normal state properties of this strongly interacting Fermi system.
Quantum Monte Carlo (QMC) simulations and the Local Density Approximation (LDA) are used to map the constant particle number (canonical) trajectories of the Bose Hubbard Hamiltonian confined in a harmonic trap onto the $(mu/U,t/U)$ phase diagram of the uniform system. Generically, these curves do not intercept the tips of the Mott insulator (MI) lobes of the uniform system. This observation necessitates a clarification of the appropriate comparison between critical couplings obtained in experiments on trapped systems with those obtained in QMC simulations. The density profiles and visibility are also obtained along these trajectories. Density profiles from QMC in the confined case are compared with LDA results.
Our understanding of various states of matter usually relies on the assumption of thermodynamic equilibrium. However, the transitions between different phases of matter can be strongly affected by non-equilibrium phenomena. Here we demonstrate and explain an example of non-equilibrium stalling of a continuous, second-order phase transition. We create a superheated atomic Bose gas, in which a Bose-Einstein condensate (BEC) persists above the equilibrium critical temperature, $T_c$, if its coupling to the surrounding thermal bath is reduced by tuning interatomic interactions. For vanishing interactions the BEC persists in the superheated regime for a minute. However, if strong interactions are suddenly turned on, it rapidly boils away. Our observations can be understood within a two-fluid picture, treating the condensed and thermal components of the gas as separate equilibrium systems with a tuneable inter-component coupling. We experimentally reconstruct a non-equilibrium phase diagram of our gas, and theoretically reproduce its main features.
We propose experimentally feasible means for non-destructive thermometry of homogeneous Bose Einstein condensates in different spatial dimensions ($din{1,2,3}$). Our impurity based protocol suggests that the fundamental error bound on thermometry at the sub nano Kelvin domain depends highly on the dimension, in that the higher the dimension the better the precision. Furthermore, sub-optimal thermometry of the condensates by using measurements that are experimentally feasible is explored. We specifically focus on measuring position and momentum of the impurity that belong to the family of Gaussian measurements. We show that, generally, experimentally feasible measurements are far from optimal, except in 1D, where position measurements are indeed optimal. This makes realistic experiments perform very well at few nano Kelvin temperatures for all dimensions, and at sub nano Kelvin temperatures in the one dimensional scenario. These results take a significant step towards experimental realisation of probe-based quantum thermometry of Bose Einstein condensates, as it deals with them in one, two and three dimensions and uses feasible measurements applicable in current experimental setups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا