Do you want to publish a course? Click here

Sequential multiple testing with generalized error control: an asymptotic optimality theory

131   0   0.0 ( 0 )
 Added by Yanglei Song
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

The sequential multiple testing problem is considered under two generalized error metrics. Under the first one, the probability of at least $k$ mistakes, of any kind, is controlled. Under the second, the probabilities of at least $k_1$ false positives and at least $k_2$ false negatives are simultaneously controlled. For each formulation, the optimal expected sample size is characterized, to a first-order asymptotic approximation as the error probabilities go to 0, and a novel multiple testing procedure is proposed and shown to be asymptotically efficient under every signal configuration. These results are established when the data streams for the various hypotheses are independent and each local log-likelihood ratio statistic satisfies a certain Strong Law of Large Numbers. In the special case of i.i.d. observations in each stream, the gains of the proposed sequential procedures over fixed-sample size schemes are quantified.



rate research

Read More

Assuming that data are collected sequentially from independent streams, we consider the simultaneous testing of multiple binary hypotheses under two general setups; when the number of signals (correct alternatives) is known in advance, and when we only have a lower and an upper bound for it. In each of these setups, we propose feasible procedures that control, without any distributional assumptions, the familywise error probabilities of both type I and type II below given, user-specified levels. Then, in the case of i.i.d. observations in each stream, we show that the proposed procedures achieve the optimal expected sample size, under every possible signal configuration, asymptotically as the two error probabilities vanish at arbitrary rates. A simulation study is presented in a completely symmetric case and supports insights obtained from our asymptotic results, such as the fact that knowledge of the exact number of signals roughly halves the expected number of observations compared to the case of no prior information.
We study an online multiple testing problem where the hypotheses arrive sequentially in a stream. The test statistics are independent and assumed to have the same distribution under their respective null hypotheses. We investigate two procedures LORD and LOND, proposed by (Javanmard and Montanari, 2015), which are proved to control the FDR in an online manner. In some (static) model, we show that LORD is optimal in some asymptotic sense, in particular as powerful as the (static) Benjamini-Hochberg procedure to first asymptotic order. We also quantify the performance of LOND. Some numerical experiments complement our theory.
Modelling edge weights play a crucial role in the analysis of network data, which reveals the extent of relationships among individuals. Due to the diversity of weight information, sharing these data has become a complicated challenge in a privacy-preserving way. In this paper, we consider the case of the non-denoising process to achieve the trade-off between privacy and weight information in the generalized $beta$-model. Under the edge differential privacy with a discrete Laplace mechanism, the Z-estimators from estimating equations for the model parameters are shown to be consistent and asymptotically normally distributed. The simulations and a real data example are given to further support the theoretical results.
Distance correlation has become an increasingly popular tool for detecting the nonlinear dependence between a pair of potentially high-dimensional random vectors. Most existing works have explored its asymptotic distributions under the null hypothesis of independence between the two random vectors when only the sample size or the dimensionality diverges. Yet its asymptotic null distribution for the more realistic setting when both sample size and dimensionality diverge in the full range remains largely underdeveloped. In this paper, we fill such a gap and develop central limit theorems and associated rates of convergence for a rescaled test statistic based on the bias-corrected distance correlation in high dimensions under some mild regularity conditions and the null hypothesis. Our new theoretical results reveal an interesting phenomenon of blessing of dimensionality for high-dimensional distance correlation inference in the sense that the accuracy of normal approximation can increase with dimensionality. Moreover, we provide a general theory on the power analysis under the alternative hypothesis of dependence, and further justify the capability of the rescaled distance correlation in capturing the pure nonlinear dependency under moderately high dimensionality for a certain type of alternative hypothesis. The theoretical results and finite-sample performance of the rescaled statistic are illustrated with several simulation examples and a blockchain application.
We generalize standard credal set models for imprecise probabilities to include higher order credal sets -- confidences about confidences. In doing so, we specify how an agents higher order confidences (credal sets) update upon observing an event. Our model begins to address standard issues with imprecise probability models, like Dilation and Belief Inertia. We conjecture that when higher order credal sets contain all possible probability functions, then in the limiting case the highest order confidences converge to form a uniform distribution over the first order credal set, where we define uniformity in terms of the statistical distance metric (total variation distance). Finite simulation supports the conjecture. We further suggest that this convergence presents the total-variation-uniform distribution as a natural, privileged prior for statistical hypothesis testing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا