Do you want to publish a course? Click here

Anisotropy-Induced Quantum Interference and Population Trapping Between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems

157   0   0.0 ( 0 )
 Added by Stephen Hughes
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate pronounced dipole-dipole coupling to control the radiative decay rate of excitons and form pure entangled states in the long time limit. We investigate both field-free entanglement evolution and coherently pumped exciton regimes, and show how a double pumping scenario can completely eliminate the decay of coherent Rabi oscillations and lead to population trapping. In the Mollow regime, we explore the emitted spectra from the driven dipoles and show how a non-pumped dipole can take on the form of a spectral triplet, quintuplet, or a singlet, which has applications for producing subnatural linewidth single photons and more easily accessing regimes of high-field quantum optics and cavity-QED.



rate research

Read More

We investigate pump-induced exciton inversion in a quantum-dot cavity system with continuous wave drive. Using a polaron-based master equation, we demonstrate excited-state populations above 0.9 for an InAs dot at a phonon bath temperature of 4K. In an exciton-driven system, the dominant mechanism is incoherent excitation from the phonon bath. For cavity driving, the mechanism is phonon-mediated switching between ground- and excited-state branches of the ladder of photon states, as quantum trajectory simulations clearly show. The exciton inversion as a function of detuning is found to be qualitatively different for exciton and cavity driving, primarily due to cavity filtering. The master equation approach allows us to include important radiative and non-radiative decay processes on the zero phonon line, provides a clear underlying dynamic in terms of photon and phonon scattering, and admits simple analytical approximations that help to explain the physics.
We show theoretically and experimentally the existence of a new quantum interference(QI) effect between the electron-hole interactions and the scattering by a single Mn impurity. Theoretical model, including electron-valence hole correlations, the short and long range exchange interaction of Mn ion with the heavy hole and with electron and anisotropy of the quantum dot, is compared with photoluminescence spectroscopy of CdTe dots with single magnetic ions. We show how design of the electronic levels of a quantum dot enable the design of an exciton, control of the quantum interference and hence engineering of light-Mn interaction.
We present a theoretical model for the dynamics of an electron that gets trapped by means of decoherence and quantum interference in the central quantum dot (QD) of a semiconductor nanoring (NR) made of five QDs, between 100 K and 300 K. The electrons dynamics is described by a master equation with a Hamiltonian based on the tight-binding model, taking into account electron-LO phonon interaction (ELOPI). Based on this configuration, the probability to trap an electron with no decoherence is almost 27%. In contrast, the probability to trap an electron with decoherence is 70% at 100 K, 63% at 200 K and 58% at 300 K. Our model provides a novel method of trapping an electron at room temperature.
158 - E. Poem , O. Kenneth , Y. Kodriano 2011
We demonstrate control over the spin state of a semiconductor quantum dot exciton using a polarized picosecond laser pulse slightly detuned from a biexciton resonance. The control pulse follows an earlier pulse, which generates an exciton and initializes its spin state as a coherent superposition of its two non-degenerate eigenstates. The control pulse preferentially couples one component of the exciton state to the biexciton state, thereby rotating the excitons spin direction. We detect the rotation by measuring the polarization of the exciton spectral line as a function of the time-difference between the two pulses. We show experimentally and theoretically how the angle of rotation depends on the detuning of the second pulse from the biexciton resonance.
Qubits based on the singlet (S) and the triplet (T0, T+) states in double quantum dots have been demonstrated in separate experiments. It has been recently proposed theoretically that under certain conditions a quantum interference could occur from the interplay between these two qubit species. Here we report experiments and modeling which confirm these theoretical predictions and identify the conditions under which this interference occurs. Density matrix calculations show that the interference pattern manifests primarily via the occupation of the common singlet state. The S/T0 qubit is found to have a much longer coherence time as compared to the S/T+ qubit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا