Do you want to publish a course? Click here

Surface Fermi arc connectivity in the type-II Weyl semimetal candidate WTe$_{2}$

210   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform ultrahigh resolution angle-resolved photoemission experiments at a temperature T=0.8 K on the type-II Weyl semimetal candidate WTe$_{2}$. We find a surface Fermi arc connecting the bulk electron and hole pockets on the (001) surface. Our results show that the surface Fermi arc connectivity to the bulk bands is strongly mediated by distinct surface resonances dispersing near the border of the surface-projected bulk band gap. By comparing the experimental results to first-principles calculations we argue that the coupling to these surface resonances, which are topologically trivial, is compatible with the classification of WTe$_{2}$ as a type-II Weyl semimetal hosting topological Fermi arcs. We further support our conclusion by a systematic characterization of the bulk and surface character of the different bands and discuss the similarity of our findings to the case of topological insulators.



rate research

Read More

Recently, a new group of layered transition-metal tetra-chalcogenides were proposed, via first principles calculations, to correspond to a new family of Weyl type-II semimetals with promising topological properties in the bulk as well as in the monolayer limit. In this article, we present measurements of the Shubnikov-de Haas (SdH) and de Haas-van Alphen effects under high magnetic fields for the type-II Weyl semimetallic candidate NbIrTe$_{4}$. We find that the angular dependence of the observed Fermi surface extremal cross-sectional areas agree well with our DFT calculations supporting the existence of Weyl type-II points in this material. Although we observe a large and non-saturating magnetoresistivity in NbIrTe$_{4}$ under fields all the way up to 35 T, Hall-effect measurements indicate that NbIrTe$_{4}$ is not a compensated semimetal. The transverse magnetoresistivity displays a four-fold angular dependence akin to the so-called butterfly magnetoresistivity observed in nodal line semimetals. However, we conclude that its field and this unconventional angular-dependence are governed by the topography of the Fermi-surface and the resulting anisotropy in effective masses and in carrier mobilities.
We experimentally investigate charge transport through the interface between a niobium superconductor and a three-dimensional WTe$_2$ Weyl semimetal. In addition to classical Andreev reflection, we observe sharp non-periodic subgap resistance resonances. From an analysis of their positions, magnetic field and temperature dependencies, we can interpret them as an analog of Tomasch oscillations for transport along the topological surface state across the region of proximity-induced superconductivity at the Nb-WTe$_2$ interface. Observation of distinct geometrical resonances implies a specific transmission direction for carriers, which is a hallmark of the Fermi arc surface states.
119 - A. Tamai , Q. S. Wu , I. Cucchi 2016
We report a combined experimental and theoretical study of the candidate type-II Weyl semimetal MoTe2. Using laser-based angle-resolved photoemission we resolve multiple distinct Fermi arcs on the inequivalent top and bottom (001) surfaces. All surface states observed experimentally are reproduced by an electronic structure calculation for the experimental crystal structure that predicts a topological Weyl semimetal state with 8 type-II Weyl points. We further use systematic electronic structure calculations simulating different Weyl point arrangements to discuss the robustness of the identified Weyl semimetal state and the topological character of Fermi arcs in MoTe2.
By combining bulk sensitive soft-X-ray angular-resolved photoemission spectroscopy and accurate first-principles calculations we explored the bulk electronic properties of WTe$_2$, a candidate type-II Weyl semimetal featuring a large non-saturating magnetoresistance. Despite the layered geometry suggesting a two-dimensional electronic structure, we find a three-dimensional electronic dispersion. We report an evident band dispersion in the reciprocal direction perpendicular to the layers, implying that electrons can also travel coherently when crossing from one layer to the other. The measured Fermi surface is characterized by two well-separated electron and hole pockets at either side of the $Gamma$ point, differently from previous more surface sensitive ARPES experiments that additionally found a significant quasiparticle weight at the zone center. Moreover, we observe a significant sensitivity of the bulk electronic structure of WTe$_2$ around the Fermi level to electronic correlations and renormalizations due to self-energy effects, previously neglected in first-principles descriptions.
96 - F. Y. Bruno , A. Tamai , Q. S. Wu 2016
We report angle-resolved photoemission experiments resolving the distinct electronic structure of the inequivalent top and bottom (001) surfaces of WTe2. On both surfaces, we identify a surface state that forms a large Fermi-arc emerging out of the bulk electron pocket. Using surface electronic structure calculations, we show that these Fermi arcs are topologically trivial and that their existence is independent of the presence of type-II Weyl points in the bulk band structure. This implies that the observation of surface Fermi arcs alone does not allow the identification of WTe2 as a topological Weyl semimetal. We further use the identification of the two different surfaces to clarify the number of Fermi surface sheets in WTe2.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا