Do you want to publish a course? Click here

K2 Discovers a Busy Bee: An Unusual Transiting Neptune Found in the Beehive Cluster

61   0   0.0 ( 0 )
 Added by Christian Obermeier
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Open clusters have been the focus of several exoplanet surveys but only a few planets have so far been discovered. The emph{Kepler} spacecraft revealed an abundance of small planets around small, cool stars, therefore, such cluster members are prime targets for exoplanet transit searches. Keplers new mission, K2, is targeting several open clusters and star-forming regions around the ecliptic to search for transiting planets around their low-mass constituents. Here, we report the discovery of the first transiting planet in the intermediate-age (800 Myr) Beehive cluster (Praesepe). K2-95 is a faint ($mathrm{Kp = 15.5,mag}$) $mathrm{M3.0pm0.5}$ dwarf from K2s Campaign 5 with an effective temperature of $mathrm{3471 pm 124,K}$, approximately solar metallicity and a radius of $mathrm{0.402 pm 0.050 ,R_odot}$. We detected a transiting planet with a radius of $mathrm{3.47^{+0.78}_{-0.53} , R_oplus}$ and an orbital period of 10.134 days. We combined photometry, medium/high-resolution spectroscopy, adaptive optics/speckle imaging and archival survey images to rule out any false positive detection scenarios, validate the planet, and further characterize the system. The planets radius is very unusual as M-dwarf field stars rarely have Neptune-sized transiting planets. The comparatively large radius of K2-95b is consistent with the other recently discovered cluster planets K2-25b (Hyades) and K2-33b (Upper Scorpius), indicating systematic differences in their evolutionary states or formation. These discoveries from K2 provide a snapshot of planet formation and evolution in cluster environments and thus make excellent laboratories to test differences between field-star and cluster planet populations.



rate research

Read More

The role of stellar age in the measured properties and occurrence rates of exoplanets is not well understood. This is in part due to a paucity of known young planets and the uncertainties in age-dating for most exoplanet host stars. Exoplanets with well-constrained ages, particularly those which are young, are useful as benchmarks for studies aiming to constrain the evolutionary timescales relevant for planets. Such timescales may concern orbital migration, gravitational contraction, or atmospheric photo-evaporation, among other mechanisms. Here we report the discovery of an adolescent transiting sub-Neptune from K2 photometry of the low-mass star K2-284. From multiple age indicators we estimate the age of the star to be 120 Myr, with a 68% confidence interval of 100-760 Myr. The size of K2-284 b ($R_P$ = 2.8 $pm$ 0.1 $R_oplus$) combined with its youth make it an intriguing case study for photo-evaporation models, which predict enhanced atmospheric mass loss during early evolutionary stages.
We report the discovery of K2-98 b (EPIC 211391664 b), a transiting Neptune-sized planet monitored by the K2 mission during its campaign 5. We combine the K2 time-series data with ground-based photometric and spectroscopic follow-up observations to confirm the planetary nature of the object and derive its mass, radius, and orbital parameters. K2-98 b is a warm Neptune-like planet in a 10-day orbit around a V=12.2~mag F-type star with $M_star$=$ 1.074pm0.042$, $R_star$=$ 1.311 ^{+ 0.083} _{ - 0.048} $, and age of $5.2_{-1.0}^{+1.2}$~Gyr. We derive a planetary mass and radius of $M_mathrm{p}$=$ 32.2 pm 8.1 $ and $R_mathrm{p}$=$4.3^{+0.3}_{-0.2}$. K2-98 b joins the relatively small group of Neptune-sized planets whose both mass and radius have been derived with a precision better than 25 %. We estimate that the planet will be engulfed by its host star in $sim$3~Gyr, due to the evolution of the latter towards the red giant branch.
Planet host stars with well-constrained ages provide a rare window to the time domain of planet formation and evolution. The NASA K2 mission has enabled the discovery of the vast majority of known planets transiting stars in clusters, providing a valuable sample of planets with known ages and radii. We present the discovery of two planets transiting K2-264, an M2 dwarf in the intermediate age (600-800 Myr) Praesepe open cluster (also known as the Beehive Cluster, M44, or NGC 2632), which was observed by K2 during Campaign 16. The planets have orbital periods of 5.8 and 19.7 days, and radii of $2.2 pm 0.2 $ and $2.7 pm 0.2$ $R_oplus$, respectively, and their equilibrium temperatures are $496 pm 10$ and $331 pm 7$ $K$, making this a system of two warm sub-Neptunes. When placed in the context of known planets orbiting field stars of similar mass to K2-264, these planets do not appear to have significantly inflated radii, as has previously been noted for some cluster planets. As the second known system of multiple planets transiting a star in a cluster, K2-264 should be valuable for testing theories of photoevaporation in systems of multiple planets. Follow-up observations with current near-infrared (NIR) spectrographs could yield planet mass measurements, which would provide information about the mean densities and compositions of small planets soon after photoevaporation is expected to have finished. Follow-up NIR transit observations using Spitzer or large ground-based telescopes could yield improved radius estimates, further enhancing the characterization of these interesting planets.
Hot Jupiters are rarely accompanied by other planets within a factor of a few in orbital distance. Previously, only two such systems have been found. Here, we report the discovery of a third system using data from the Transiting Exoplanet Survey Satellite (TESS). The host star, TOI-1130, is an 11th magnitude K-dwarf in the Gaia G band. It has two transiting planets: a Neptune-sized planet ($3.65pm 0.10$ $R_E$) with a 4.1-day period, and a hot Jupiter ($1.50^{+0.27}_{-0.22}$ $R_J$) with an 8.4-day period. Precise radial-velocity observations show that the mass of the hot Jupiter is $0.974^{+0.043}_{-0.044}$ $M_J$. For the inner Neptune, the data provide only an upper limit on the mass of 0.17 $M_J$ (3$sigma$). Nevertheless, we are confident the inner planet is real, based on follow-up ground-based photometry and adaptive optics imaging that rule out other plausible sources of the TESS transit signal. The unusual planetary architecture of and the brightness of the host star make TOI-1130 a good test case for planet formation theories, and an attractive target for future spectroscopic observations.
We present a detailed analysis of HARPS-N radial velocity observations of K2-100, a young and active star in the Praesepe cluster, which hosts a transiting planet with a period of 1.7 days. We model the activity-induced radial velocity variations of the host star with a multi-dimensional Gaussian Process framework and detect a planetary signal of $10.6 pm 3.0 {rm m,s^{-1}}$, which matches the transit ephemeris, and translates to a planet mass of $21.8 pm 6.2 M_oplus$. We perform a suite of validation tests to confirm that our detected signal is genuine. This is the first mass measurement for a transiting planet in a young open cluster. The relatively low density of the planet, $2.04^{+0.66}_{-0.61} {rm g,cm^{-3}}$, implies that K2-100b retains a significant volatile envelope. We estimate that the planet is losing its atmosphere at a rate of $10^{11}-10^{12},{rm g,s^{-1}}$ due to the high level of radiation it receives from its host star.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا