Do you want to publish a course? Click here

Constraining the Higgs couplings to up and down quarks using production kinematics at the CERN Large Hadron Collider

61   0   0.0 ( 0 )
 Added by Heather E. Logan
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We study the prospects for constraining the Higgs bosons couplings to up and down quarks using kinematic distributions in Higgs production at the CERN Large Hadron Collider. We find that the Higgs $p_T$ distribution can be used to constrain these couplings with precision competitive to other proposed techniques. With 3000 fb$^{-1}$ of data at 13 TeV in the four-lepton decay channel, we find $-0.73 lesssim bar{kappa}_u lesssim 0.33$ and $-0.88 lesssim bar{kappa}_d lesssim 0.32$, where $bar{kappa}_q = (m_q/m_b) kappa_q$ is a scaling factor that modifies the $q$ quark Yukawa coupling relative to the Standard Model bottom quark Yukawa coupling. The sensitivity may be improved by including additional Higgs decay channels.



rate research

Read More

We consider a minimal extension of the standard model where a real, gauge singlet scalar field is added to the standard spectrum. Introducing the Ansatz of universality of scalar couplings, we are led to a scenario which has a set of very distinctive and testable predictions: (i) the mixing between the standard model Higgs and the new state is near maximal, (ii) the ratio of the two Higgs mass eigenstates is fixed ($sim sqrt{3}$), (iii) the decay modes of each of the two eigenstates are standard model like. We also study how electroweak precision tests constrain this scenario. We predict the lighter Higgs to lie in the range of 114 and 145 GeV, and hence the heavier one between 198 and 250 GeV. The predictions of the model can be tested at the upcoming LHC.
We study the impact of dimension-six operators on single- and double-Higgs production rates via gluon fusion at the Large Hadron Collider (LHC). If the top-Yukawa coupling is modified by some new physics whose scale is of the TeV scale, its effect changes the cross sections of single-Higgs production $ggto H$ and double-Higgs production $ggto HH$ through the top-loop diagram. In particular, double-Higgs production can receive significant enhancement from the effective top-Yukawa coupling and the new dimension-five coupling $t{bar t}HH$ which are induced by the dimension-six operator. Comparing these results to the forthcoming data at the LHC, one can extract information of the dimension-six operators relevant to the top quark and the Higgs boson.
We investigate the viability of observing charged Higgs bosons (H^+/-) produced in association with W bosons at the CERN Large Hadron Collider, using the leptonic decay H^+ -> tau^+ nu_tau and hadronic W-decay, within different scenarios of the Minimal Supersymmetric Standard Model (MSSM) with both real and complex parameters. Performing a parton level study we show how the irreducible Standard Model background from W+2 jets can be controlled by applying appropriate cuts and find that the size of a possible signal depends on the cuts needed to suppress QCD backgrounds and misidentifications. In the standard maximal mixing scenario of the MSSM we find a viable signal for large tan(beta) and intermediate H^+/- masses (~m_t) when using optimistic cuts whereas for more pessimistic ones we only find a viable signal for very large tan(beta) (>~50). We have also investigated a special class of MSSM scenarios with large mass-splittings among the heavy Higgs bosons where the cross-section can be resonantly enhanced by factors up to one hundred, with a strong dependence on the CP-violating phases. Even so we find that the signal after cuts remains small except for small masses (~< m_t) with optimistic cuts. Finally, in all the scenarios we have investigated we have only found small CP-asymmetries.
298 - V. Topor Pop 2013
Effects of strong longitudinal colour electric fields (SCF), shadowing, and quenching on the open prompt charm mesons (D$^0$, D$^+$, D$^{*+}$, D${_s}{^+}$) production in central Pb + Pb collisions at $sqrt{s_{rm NN}}$ = 2.76 TeV are investigated within the framework of the {small HIJING/B=B v2.0} model. We compute the nuclear modification factor $R_{rm PbPb}^{rm D}$, and show that the above nuclear effects constitute important dynamical mechanisms in the description of experimental data. The strength of colour fields (as characterized by the string tension $kappa$), partonic energy loss and jet quenching process lead to a suppression factor consistent with recent published data. Predictions for future beauty mesons measurements have been included. Ratios of strange to non-strange prompt charm mesons in central Pb + Pb and minimum bias (MB) $ p + p$ collisions at 2.76 TeV are also discussed. Minimum bias $p + p$ collisions which constitute theoretical baseline in our calculations are studied at the centre of mass energies $sqrt{s}$ = 2.76 TeV and 7 TeV.
A common lore has arisen that beyond the Standard Model (BSM) particles, which can be searched for at current and proposed experiments, should have flavorless or mostly third-generation interactions with Standard Model quarks. This theoretical bias severely limits the exploration of BSM phenomenology, and is especially constraining for extended Higgs sectors. Such limitations can be avoided in the context of Spontaneous Flavor Violation (SFV), a robust and UV complete framework that allows for significant couplings to any up or down-type quark, while suppressing flavor-changing neutral currents via flavor alignment. In this work we study the theory and phenomenology of extended SFV Higgs sectors with large couplings to any quark generation. We perform a comprehensive analysis of flavor and collider constraints of extended SFV Higgs sectors, and demonstrate that new Higgs bosons with large couplings to the light quarks may be found at the electroweak scale. In particular, we find that new Higgses as light as 100 GeV with order $sim$ 0.1 couplings to first or second generation quarks, which are copiously produced at LHC via quark fusion, are allowed by current constraints. Furthermore, the additional SFV Higgses can mix with the SM Higgs, providing strong theory motivation for an experimental program looking for deviations in the light quark-Higgs couplings. Our work demonstrates the importance of exploring BSM physics coupled preferentially to light quarks, and the need to further develop dedicated experimental techniques for the LHC and future colliders.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا