Do you want to publish a course? Click here

Localization on three-dimensional manifolds

113   0   0.0 ( 0 )
 Added by Brian Willett
 Publication date 2016
  fields Physics
and research's language is English
 Authors Brian Willett




Ask ChatGPT about the research

In this review article we describe the localization of three dimensional N=2 supersymmetric theories on compact manifolds, including the squashed sphere, S^3_b, the lens space, S^3_b/Z_p, and S^2 x S^1. We describe how to write supersymmetric actions on these spaces, and then compute the partition functions and other supersymmetric observables by employing the localization argument. We briefly survey some applications of these computations.



rate research

Read More

We consider supersymmetric gauge theories on Riemannian three-manifolds with the topology of a three-sphere. The three-manifold is always equipped with an almost contact structure and an associated Reeb vector field. We show that the partition function depends only on this vector field, giving an explicit expression in terms of the double sine function. In the large N limit our formula agrees with a recently discovered two-parameter family of dual supergravity solutions. We also explain how our results may be applied to prove vortex-antivortex factorization. Finally, we comment on the extension of our results to three-manifolds with non-trivial fundamental group.
The usual action of Yang-Mills theory is given by the quadratic form of curvatures of a principal G bundle defined on four dimensional manifolds. The non-linear generalization which is known as the Born-Infeld action has been given. In this paper we give another non-linear generalization on four dimensional manifolds and call it a universal Yang-Mills action. The advantage of our model is that the action splits {bf automatically} into two parts consisting of self-dual and anti-self-dual directions. Namely, we have automatically the self-dual and anti-self-dual equations without solving the equations of motion as in a usual case. Our method may be applicable to recent non-commutative Yang-Mills theories studied widely.
Haah codes represent a singularly interesting gapped Hamiltonian schema that has resisted a natural generalization, although recent work shows that the closely related type I fracton models are more commonplace. These type I siblings of Haah codes are better understood, and a generalized topological quantum field theory framework has been proposed. Following the same conceptual framework, we outline a program to generalize Haah codes to all 3-manifolds using Hastings LR stabilizer codes for finite groups.
We develop the formalism of quantum mechanics on three dimensional fuzzy space and solve the Schrodinger equation for a free particle, finite and infinite fuzzy wells. We show that all results reduce to the appropriate commutative limits. A high energy cut-off is found for the free particle spectrum, which also results in the modification of the high energy dispersion relation. An ultra-violet/infra-red duality is manifest in the free particle spectrum. The finite well also has an upper bound on the possible energy eigenvalues. The phase shifts due to scattering around the finite fuzzy potential well have been calculated.
We compute the ${cal N}=2$ supersymmetric partition function of a gauge theory on a four-dimensional compact toric manifold via equivariant localization. The result is given by a piecewise constant function of the Kahler form with jumps along the walls where the gauge symmetry gets enhanced. The partition function on such manifolds is written as a sum over the residues of a product of partition functions on $mathbb{C}^2$. The evaluation of these residues is greatly simplified by using an abstruse duality that relates the residues at the poles of the one-loop and instanton parts of the $mathbb{C}^2$ partition function. As particular cases, our formulae compute the $SU(2)$ and $SU(3)$ {it equivariant} Donaldson invariants of $mathbb{P}^2$ and $mathbb{F}_n$ and in the non-equivariant limit reproduce the results obtained via wall-crossing and blow up methods in the $SU(2)$ case. Finally, we show that the $U(1)$ self-dual connections induce an anomalous dependence on the gauge coupling, which turns out to satisfy a $mathcal{N}=2$ analog of the $mathcal{N}=4$ holomorphic anomaly equations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا