A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.
The collimation efficiency for Pb ion beams in the LHC is predicted to be lower than requirements. Nuclear fragmentation and electromagnetic dissociation in the primary collimators create fragments with a wide range of Z/A ratios, which are not intercepted by the secondary collimators but lost where the dispersion has grown sufficiently large. In this article we present measurements and simulations of loss patterns generated by a prototype LHC collimator in the CERN SPS. Measurements were performed at two different energies and angles of the collimator. We also compare with proton loss maps and find a qualitative difference between Pb ions and protons, with the maximum loss rate observed at different places in the ring. This behavior was predicted by simulations and provides a valuable benchmark of our understanding of ion beam losses caused by collimation.
The repeated passage of a coasting ion beam of a storage ring through a thin target induces a shift in the revolution frequency due to the energy loss in the target. Since the frequency shift is proportional to the beam-target overlap, its measurement offers the possibility of determining the target thickness and hence the corresponding luminosity in an experiment. This effect has been investigated with an internal proton beam of energy 2.65 GeV at the COSY-Julich accelerator using the ANKE spectrometer and a hydrogen cluster-jet target. Possible sources of error, especially those arising from the influence of residual gas in the ring, were carefully studied, resulting in a accuracy of better than 5%. The luminosity determined in this way was used, in conjunction with measurements in the ANKE forward detector, to determine the cross section for elastic proton-proton scattering. The result is compared to published data as well as to the predictions of a phase shift solution. The practicability and the limitations of the energy-loss method are discussed.
The Radio Frequency Quadrupole of SANAEM Project Prometheus will be a demonstration and educational machine which will accelerate protons from 20 keV to 1.5 MeV. The project is funded by Turkish Atomic Energy Authority and it will be located at Saraykoy Nuclear Research and Training Center in Ankara. The SPP beamline consists of a multi-cusp H+ ion source, a Low Energy Beam Transport line and a four-vane RFQ operating at 352.2 MHz. The design studies for the multi-cusp ion source (RF or DC) were performed with IBSimu and SIMION software packages. The source has already been produced and currently undergoes extensive testing. There is also a preliminary design for the solenoid based LEBT, POISSON and PATH were used in parallel for the preliminary design. Two solenoid magnets are produced following this design. The RFQ design was made using LIDOS.RFQ.Designer and it was crosschecked with a home-grown software package, DEMIRCI. The initial beam dynamics studies have been performed with both LIDOS and TOUTATIS. This paper discusses the design of the SPP beamline focusing on the RFQ beam dynamics.
Studies of the electron beam dynamics for the 4GLS design are presented. 4GLS will provide three different electron bunch trains to a variety of user synchrotron sources. The 1 kHz XUV-FEL and 100 mA High Average Current branches share a common 540 MeV linac, whilst the 13 MHz IR-FEL must be well-synchronised to them. An overview of the injector designs, electron transport, and energy recovery is given, including ongoing studies of coherent synchrotron radiation, beam break-up and wakefields. This work is being pursued for the forthcoming Technical Design Report due in 2008.
This paper is a summary report of the ICFA Beam Dynamics Workshop Accelerators for a Higgs Factory: Linear vs. Circular (HF2012). It discusses four types of accelerators as possible candidates for a Higgs factory: linear e+e- colliders, circular e+e- colliders, muon collider and photon colliders. The comparison includes: physics reach, performance (energy and luminosity), upgrade potential, technology maturity and readiness, and technical challenges requiring further R&D.