Do you want to publish a course? Click here

SPP Beamline Design and Beam Dynamics

172   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Radio Frequency Quadrupole of SANAEM Project Prometheus will be a demonstration and educational machine which will accelerate protons from 20 keV to 1.5 MeV. The project is funded by Turkish Atomic Energy Authority and it will be located at Saraykoy Nuclear Research and Training Center in Ankara. The SPP beamline consists of a multi-cusp H+ ion source, a Low Energy Beam Transport line and a four-vane RFQ operating at 352.2 MHz. The design studies for the multi-cusp ion source (RF or DC) were performed with IBSimu and SIMION software packages. The source has already been produced and currently undergoes extensive testing. There is also a preliminary design for the solenoid based LEBT, POISSON and PATH were used in parallel for the preliminary design. Two solenoid magnets are produced following this design. The RFQ design was made using LIDOS.RFQ.Designer and it was crosschecked with a home-grown software package, DEMIRCI. The initial beam dynamics studies have been performed with both LIDOS and TOUTATIS. This paper discusses the design of the SPP beamline focusing on the RFQ beam dynamics.



rate research

Read More

The Long Baseline Neutrino Experiment (LBNE) will utilize a beamline facility located at Fermilab to carry out a compelling research program in neutrino physics. The facility will aim a wide band beam of neutrinos toward a detector placed at the Sanford Underground Research Facility in South Dakota, about 1,300 km away. The main elements of the facility are a primary proton beamline and a neutrino beamline. The primary proton beam (60 -120 GeV) will be extracted from the MI-10 section of Fermilabs Main Injector. Neutrinos are produced after the protons hit a solid target and produce mesons which are sign selected and subsequently focused by a set of magnetic horns into a 204 m long decay pipe where they decay mostly into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The initial beam power is expected to be ~1.2 MW, however the facility is designed to be upgradeable for 2.3 MW operation. We discuss here the status of the design and the associated challenges.
The Long Baseline Neutrino Facility (LBNF) will utilize a beamline located at Fermilab to provide and aim a neutrino beam of sufficient intensity and appropriate energy range toward the Deep Underground Neutrino Experiment (DUNE) detectors, placed deep underground at the SURF Facility in Lead, South Dakota. The primary proton beam (60-120 GeV) will be extracted from the MI-10 section of Fermilabs Main Injector. Neutrinos will be produced when the protons interact with a solid target to produce mesons which will be subsequently focused by magnetic horns into a 194m long decay pipe where they decay into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spatial and radiological constraints, and the experience gained by operating the NuMI facility at Fermilab. The Beamline facility is designed for initial operation at a proton-beam power of 1.2 MW, with the capability to support an upgrade to 2.4 MW. LBNF/DUNE obtained CD-1 approval in November 2015. We discuss here the design status and the associated challenges as well as the R&D and plans for improvements before baselining the facility.
The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding in a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilabs NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station.
87 - E. Celebi 2021
The RFQ design tool DEMIRCI aims to provide fast and accurate simulation of a light ion accelerating cavity and of the ion beam in it. It is a modern tool with a graphical user interface leading to a point and click method to help the designer. This article summarises the recent software developments such as the addition of RFQ acceptance match, beam dynamics and 8-term potential coefficient calculations. Its results are compared to other similar software, to discuss the attained compatibility level.
The ENUBET ERC project (2016-2021) is studying a facility based on a narrow band beam capable of constraining the neutrino fluxes normalization through the monitoring of the associated charged leptons in an instrumented decay tunnel. A key element of the project is the design and optimization of the hadronic beamline. In this proceeding we present progress on the studies of the proton extraction schemes. We also show a realistic implementation and simulation of the beamline.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا