Do you want to publish a course? Click here

Fission fragment mass distributions in reactions populating 200Pb

78   0   0.0 ( 0 )
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

The fission fragment mass distributions have been measured in the reactions 16O + 184W and 19F+ 181Ta populating the same compound nucleus 200Pb? at similar excitation energies. It is found that the widths of the mass distribution increases monotonically with excitation energy, indicating the absence of quasi-fission for both reactions. This is contrary to two recent claims of the presence of quasi-fission in the above mentioned reactions.



rate research

Read More

Mass distributions of the fragments in the fission of $^{206}$Po and the N=126 neutron shell closed nucleus $^{210}$Po have been measured. No significant deviation of mass distributions has been found between $^{206}$Po and $^{210}$Po, indicating the absence of shell correction at the saddle point in both the nuclei, contrary to the reported angular anisotropy and pre-scission neutron multiplicity results. This new result provides benchmark data to test the new fission dynamical models to study the effect of shell correction on the potential energy surface at saddle point.
The isotopic-yield distributions and kinematic properties of fragments produced in transfer-induced fission of 240Pu and fusion-induced fission of 250Cf, with 9 MeV and 45 MeV of excitation energy respectively, were measured in inverse kinematics with the spectrometer VAMOS. The kinematic properties of identified fission fragments allow to derive properties of the scission configuration such as the distance between fragments, the total kinetic energy, the neutron multiplicity, the total excitation energy, and, for the first time, the proton- and neutron-number sharing during the emergence of the fragments. These properties of the scission point are studied as functions of the fragment atomic number. The correlation between these observables, gathered in one single experiment and for two different fissioning systems at different excitation energies, give valuable information for the understanding and modeling of the fission process.
122 - J. Randrup , P. Moller , 2011
Random walks on five-dimensional potential-energy surfaces were recently found to yield fission-fragment mass distributions that are in remarkable agreement with experimental data. Within the framework of the Smoluchowski equation of motion, which is appropriate for highly dissipative evolutions, we discuss the physical justification for that treatment and investigate the sensitivity of the resulting mass yields to a variety of model ingredients, including in particular the dimensionality and discretization of the shape space and the structure of the dissipation tensor. The mass yields are found to be relatively robust, suggesting that the simple random walk presents a useful calculational tool. Quantitatively refined results can be obtained by including physically plausible forms of the dissipation, which amounts to simulating the Brownian shape motion in an anisotropic medium.
During the fission process, the nucleus deforms and elongates up to the two fragments inception and their final separation at scission deformation. The evolution of the nucleus energy with deformation is determined by the macroscopic properties of the nucleus, and is also strongly influenced by the single-particle structure of the nucleus. The fission fragment distribution is a direct consequence of the deformation path the nucleus has encountered, and therefore is the most genuine experimental observation of the potential energy landscape of the deforming nucleus. Very asymmetric fusion-fission reactions at energy close to the Coulomb barrier, produce well-defined conditions of the compound nucleus formation, where processes such as quasi-fission, pre-equilibrium emission and incomplete fusion are negligible. In the same time, the excitation energy is sufficient to reduce significantly structural effects, and mostly the macroscopic part of the potential is responsible for the formation of the fission fragments. We use inverse kinematics combined with spectrometers to select and identify the fission fragments produced in $^{238}$U+$^{12}$C at a bombarding energy close to and well-above the Coulomb barrier. For the first time, the isotopic yields are measured over the complete atomic-number distribution, between Z=30 and Z=63. The experimental set-up also allows to identify transfer-induced reactions, which lead to low-energy fission where the nuclear shell structure shows a strong influence on the fission-fragment distributions. The resulting set of data gives the possibility to observe the fission fragment properties over a wide range of excitation energy, and they reveal the vanishing of the shell effects in the potential energy of the fissioning nucleus, as well as the influence of fission dynamics.
Background: The influence of shell effect on the dynamics of the fusion fission process and its evolution with excitation energy in the pre-actinide Hg-Pb region in general is a matter of intense research in recent years. In particular, a strong ambiguity remains for the neutron shell closed $^{210}$Po nucleus regarding the role of shell effect in fission around $approx$ 30 - 40 MeV of excitation energy. Purpose: We have measured the fission fragment mass distribution of $^{210}$Po populated using fusion of $^{4}$He + $^{206}$Pb at different excitation energies and compare the result with recent theoretical predictions as well as with our previous measurement for the same nucleus populated through a different entrance channel. Mass distribution in the fission of the neighbouring nuclei $^{213}$At is also studied for comparison. Methods: Two large area Multi-wire Proportional Counters (MWPC) were used for complete kinematical measurement of the coincident fission fragments. The time of flight differences of the coincident fission fragments were used to directly extract the fission fragment mass distributions. Results: The measured fragment mass distribution for the reactions $^{4}$He + $^{206}$Pb and $^{4}$He + $^{209}$Bi were symmetric and the width of the mass distributions were found to increase monotonically with excitation energy above 36.7 MeV and 32.9 MeV, respectively, indicating the absence of shell effects at the saddle. However, in the fission of $^{210}$Po, we find minor deviation from symmetric mass distributions at the lowest excitation energy (30.8 MeV). Conclusion: Persistence of shell effect in fission fragment mass distribution of $^{210}$Po was observed at the excitation energy $approx$ 31 MeV as predicted by the theory; at higher excitation energy, however, the present study reaffirms the absence of any shell correction in the fission of $^{210}$Po.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا