Do you want to publish a course? Click here

Upper Limits on the 21 cm Power Spectrum at z = 5.9 from Quasar Absorption Line Spectroscopy

45   0   0.0 ( 0 )
 Added by Jonathan Pober
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present upper limits on the 21 cm power spectrum at $z = 5.9$ calculated from the model-independent limit on the neutral fraction of the intergalactic medium of $x_{rm H{small I }} < 0.06 + 0.05 (1sigma)$ derived from dark pixel statistics of quasar absorption spectra. Using 21CMMC, a Markov chain Monte Carlo Epoch of Reionization analysis code, we explore the probability distribution of 21 cm power spectra consistent with this constraint on the neutral fraction. We present 99 per cent confidence upper limits of $Delta^2(k) < 10$ to $20 {rm mK}^2$ over a range of $k$ from 0.5 to $2.0 h{rm Mpc}^{-1}$, with the exact limit dependent on the sampled $k$ mode. This limit can be used as a null test for 21 cm experiments: a detection of power at $z=5.9$ in excess of this value is highly suggestive of residual foreground contamination or other systematic errors affecting the analysis.



rate research

Read More

A new upper limit on the 21-cm signal power spectrum at a redshift of $z approx 9.1$ is presented, based on 141 hours of data obtained with the Low-Frequency Array (LOFAR). The analysis includes significant improvements in spectrally-smooth gain-calibration, Gaussian Process Regression (GPR) foreground mitigation and optimally-weighted power spectrum inference. Previously seen `excess power due to spectral structure in the gain solutions has markedly reduced but some excess power still remains with a spectral correlation distinct from thermal noise. This excess has a spectral coherence scale of $0.25 - 0.45$,MHz and is partially correlated between nights, especially in the foreground wedge region. The correlation is stronger between nights covering similar local sidereal times. A best 2-$sigma$ upper limit of $Delta^2_{21} < (73)^2,mathrm{mK^2}$ at $k = 0.075,mathrm{h,cMpc^{-1}}$ is found, an improvement by a factor $approx 8$ in power compared to the previously reported upper limit. The remaining excess power could be due to residual foreground emission from sources or diffuse emission far away from the phase centre, polarization leakage, chromatic calibration errors, ionosphere, or low-level radio-frequency interference. We discuss future improvements to the signal processing chain that can further reduce or even eliminate these causes of excess power.
We present the first limits on the Epoch of Reionization (EoR) 21-cm HI power spectra, in the redshift range $z=7.9-10.6$, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total 13,h of data were used from observations centred on the North Celestial Pole (NCP). After subtraction of the sky model and the noise bias, we detect a non-zero $Delta^2_{rm I} = (56 pm 13 {rm mK})^2$ (1-$sigma$) excess variance and a best 2-$sigma$ upper limit of $Delta^2_{rm 21} < (79.6 {rm mK})^2$ at $k=0.053$$h$cMpc$^{-1}$ in the range $z=$9.6-10.6. The excess variance decreases when optimizing the smoothness of the direction- and frequency-dependent gain calibration, and with increasing the completeness of the sky model. It is likely caused by (i) residual side-lobe noise on calibration baselines, (ii) leverage due to non-linear effects, (iii) noise and ionosphere-induced gain errors, or a combination thereof. Further analyses of the excess variance will be discussed in forthcoming publications.
We report upper-limits on the Epoch of Reionization (EoR) 21 cm power spectrum at redshifts 7.9 and 10.4 with 18 nights of data ($sim36$ hours of integration) from Phase I of the Hydrogen Epoch of Reionization Array (HERA). The Phase I data show evidence for systematics that can be largely suppressed with systematic models down to a dynamic range of $sim10^9$ with respect to the peak foreground power. This yields a 95% confidence upper limit on the 21 cm power spectrum of $Delta^2_{21} le (30.76)^2 {rm mK}^2$ at $k=0.192 h {rm Mpc}^{-1}$ at $z=7.9$, and also $Delta^2_{21} le (95.74)^2 {rm mK}^2$ at $k=0.256 h {rm Mpc}^{-1}$ at $z=10.4$. At $z=7.9$, these limits are the most sensitive to-date by over an order of magnitude. While we find evidence for residual systematics at low line-of-sight Fourier $k_parallel$ modes, at high $k_parallel$ modes we find our data to be largely consistent with thermal noise, an indicator that the system could benefit from deeper integrations. The observed systematics could be due to radio frequency interference, cable sub-reflections, or residual instrumental cross-coupling, and warrant further study. This analysis emphasizes algorithms that have minimal inherent signal loss, although we do perform a careful accounting in a companion paper of the small forms of loss or bias associated with the pipeline. Overall, these results are a promising first step in the development of a tuned, instrument-specific analysis pipeline for HERA, particularly as Phase II construction is completed en route to reaching the full sensitivity of the experiment.
We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of $10^4$ mK on comoving scales $klesssim 0.5 h$Mpc$^{-1}$. This represents the first upper limits on the $21$ cm power spectrum fluctuations at redshifts $12lesssim z lesssim 18$ but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.
421 - Kanan K. Datta 2011
Observations of redshifted 21-cm radiation from neutral hydrogen during the epoch of reionization (EoR) are considered to constitute the most promising tool to probe that epoch. One of the major goals of the first generation of low frequency radio telescopes is to measure the 3D 21-cm power spectrum. However, the 21-cm signal could evolve substantially along the line of sight (LOS) direction of an observed 3D volume, since the received signal from different planes transverse to the LOS originated from different look-back times and could therefore be statistically different. Using numerical simulations we investigate this so-called light cone effect on the spherically averaged 3D 21-cm power spectrum. For this version of the power spectrum, we find that the effect mostly `averages out and observe a smaller change in the power spectrum compared to the amount of evolution in the mean 21-cm signal and its rms variations along the LOS direction. Nevertheless, changes up to 50% at large scales are possible. In general the power is enhanced/suppressed at large/small scales when the effect is included. The cross-over mode below/above which the power is enhanced/suppressed moves toward larger scales as reionization proceeds. When considering the 3D power spectrum we find it to be anisotropic at the late stages of reionization and on large scales. The effect is dominated by the evolution of the ionized fraction of hydrogen during reionization and including peculiar velocities hardly changes these conclusions. We present simple analytical models which explain qualitatively all the features we see in the simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا