Do you want to publish a course? Click here

First Results from HERA Phase I: Upper Limits on the Epoch of Reionization 21 cm Power Spectrum

93   0   0.0 ( 0 )
 Added by Nicholas Kern
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report upper-limits on the Epoch of Reionization (EoR) 21 cm power spectrum at redshifts 7.9 and 10.4 with 18 nights of data ($sim36$ hours of integration) from Phase I of the Hydrogen Epoch of Reionization Array (HERA). The Phase I data show evidence for systematics that can be largely suppressed with systematic models down to a dynamic range of $sim10^9$ with respect to the peak foreground power. This yields a 95% confidence upper limit on the 21 cm power spectrum of $Delta^2_{21} le (30.76)^2 {rm mK}^2$ at $k=0.192 h {rm Mpc}^{-1}$ at $z=7.9$, and also $Delta^2_{21} le (95.74)^2 {rm mK}^2$ at $k=0.256 h {rm Mpc}^{-1}$ at $z=10.4$. At $z=7.9$, these limits are the most sensitive to-date by over an order of magnitude. While we find evidence for residual systematics at low line-of-sight Fourier $k_parallel$ modes, at high $k_parallel$ modes we find our data to be largely consistent with thermal noise, an indicator that the system could benefit from deeper integrations. The observed systematics could be due to radio frequency interference, cable sub-reflections, or residual instrumental cross-coupling, and warrant further study. This analysis emphasizes algorithms that have minimal inherent signal loss, although we do perform a careful accounting in a companion paper of the small forms of loss or bias associated with the pipeline. Overall, these results are a promising first step in the development of a tuned, instrument-specific analysis pipeline for HERA, particularly as Phase II construction is completed en route to reaching the full sensitivity of the experiment.

rate research

Read More

We present the first limits on the Epoch of Reionization (EoR) 21-cm HI power spectra, in the redshift range $z=7.9-10.6$, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total 13,h of data were used from observations centred on the North Celestial Pole (NCP). After subtraction of the sky model and the noise bias, we detect a non-zero $Delta^2_{rm I} = (56 pm 13 {rm mK})^2$ (1-$sigma$) excess variance and a best 2-$sigma$ upper limit of $Delta^2_{rm 21} < (79.6 {rm mK})^2$ at $k=0.053$$h$cMpc$^{-1}$ in the range $z=$9.6-10.6. The excess variance decreases when optimizing the smoothness of the direction- and frequency-dependent gain calibration, and with increasing the completeness of the sky model. It is likely caused by (i) residual side-lobe noise on calibration baselines, (ii) leverage due to non-linear effects, (iii) noise and ionosphere-induced gain errors, or a combination thereof. Further analyses of the excess variance will be discussed in forthcoming publications.
Recently, the Hydrogen Epoch of Reionization Array (HERA) collaboration has produced the experiments first upper limits on the power spectrum of 21-cm fluctuations at z~8 and 10. Here, we use several independent theoretical models to infer constraints on the intergalactic medium (IGM) and galaxies during the epoch of reionization (EoR) from these limits. We find that the IGM must have been heated above the adiabatic cooling threshold by z~8, independent of uncertainties about the IGM ionization state and the nature of the radio background. Combining HERA limits with galaxy and EoR observations constrains the spin temperature of the z~8 neutral IGM to 27 K < T_S < 630 K (2.3 K < T_S < 640 K) at 68% (95%) confidence. They therefore also place a lower bound on X-ray heating, a previously unconstrained aspects of early galaxies. For example, if the CMB dominates the z~8 radio background, the new HERA limits imply that the first galaxies produced X-rays more efficiently than local ones (with soft band X-ray luminosities per star formation rate constrained to L_X/SFR = { 10^40.2, 10^41.9 } erg/s/(M_sun/yr) at 68% confidence), consistent with expectations of X-ray binaries in low-metallicity environments. The z~10 limits require even earlier heating if dark-matter interactions (e.g., through millicharges) cool down the hydrogen gas. Using a model in which an extra radio background is produced by galaxies, we rule out (at 95% confidence) the combination of high radio and low X-ray luminosities of L_{r, u}/SFR > 3.9 x 10^24 W/Hz/(M_sun/yr) and L_X/SFR<10^40 erg/s/(M_sun/yr). The new HERA upper limits neither support nor disfavor a cosmological interpretation of the recent EDGES detection. The analysis framework described here provides a foundation for the interpretation of future HERA results.
We describe the validation of the HERA Phase I software pipeline by a series of modular tests, building up to an end-to-end simulation. The philosophy of this approach is to validate the software and algorithms used in the Phase I upper limit analysis on wholly synthetic data satisfying the assumptions of that analysis, not addressing whether the actual data meet these assumptions. We discuss the organization of this validation approach, the specific modular tests performed, and the construction of the end-to-end simulations. We explicitly discuss the limitations in scope of the current simulation effort. With mock visibility data generated from a known analytic power spectrum and a wide range of realistic instrumental effects and foregrounds, we demonstrate that the current pipeline produces power spectrum estimates that are consistent with known analytic inputs to within thermal noise levels (at the 2 sigma level) for k > 0.2 h/Mpc for both bands and fields considered. Our input spectrum is intentionally amplified to enable a strong `detection at k ~0.2 h/Mpc -- at the level of ~25 sigma -- with foregrounds dominating on larger scales, and thermal noise dominating at smaller scales. Our pipeline is able to detect this amplified input signal after suppressing foregrounds with a dynamic range (foreground to noise ratio) of > 10^7. Our validation test suite uncovered several sources of scale-independent signal loss throughout the pipeline, whose amplitude is well-characterized and accounted for in the final estimates. We conclude with a discussion of the steps required for the next round of data analysis.
We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of $10^4$ mK on comoving scales $klesssim 0.5 h$Mpc$^{-1}$. This represents the first upper limits on the $21$ cm power spectrum fluctuations at redshifts $12lesssim z lesssim 18$ but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.
90 - Rajesh Mondal 2015
The non-Gaussian nature of the epoch of reionization (EoR) 21-cm signal has a significant impact on the error variance of its power spectrum $P({bf textit{k}})$. We have used a large ensemble of semi-numerical simulations and an analytical model to estimate the effect of this non-Gaussianity on the entire error-covariance matrix ${mathcal{C}}_{ij}$. Our analytical model shows that ${mathcal{C}}_{ij}$ has contributions from two sources. One is the usual variance for a Gaussian random field which scales inversely of the number of modes that goes into the estimation of $P({bf textit{k}})$. The other is the trispectrum of the signal. Using the simulated 21-cm signal ensemble, an ensemble of the randomized signal and ensembles of Gaussian random ensembles we have quantified the effect of the trispectrum on the error variance ${mathcal{C}}_{ij}$. We find that its relative contribution is comparable to or larger than that of the Gaussian term for the $k$ range $0.3 leq k leq 1.0 ,{rm Mpc}^{-1}$, and can be even $sim 200$ times larger at $k sim 5, {rm Mpc}^{-1}$. We also establish that the off-diagonal terms of ${mathcal{C}}_{ij}$ have statistically significant non-zero values which arise purely from the trispectrum. This further signifies that the error in different $k$ modes are not independent. We find a strong correlation between the errors at large $k$ values ($ge 0.5 ,{rm Mpc}^{-1}$), and a weak correlation between the smallest and largest $k$ values. There is also a small anti-correlation between the errors in the smallest and intermediate $k$ values. These results are relevant for the $k$ range that will be probed by the current and upcoming EoR 21-cm experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا