No Arabic abstract
The growth of brightest cluster galaxies is closely related to the properties of their host cluster. We present evidence for dry mergers as the dominant source of BCG mass growth at $zlesssim1$ in the XXL 100 brightest cluster sample. We use the global red sequence, H$alpha$ emission and mean star formation history to show that BCGs in the sample possess star formation levels comparable to field ellipticals of similar stellar mass and redshift. XXL 100 brightest clusters are less massive on average than those in other X-ray selected samples such as LoCuSS or HIFLUGCS. Few clusters in the sample display high central gas concentration, rendering inefficient the growth of BCGs via star formation resulting from the accretion of cool gas. Using measures of the relaxation state of their host clusters, we show that BCGs grow as relaxation proceeds. We find that the BCG stellar mass corresponds to a relatively constant fraction 1% of the total cluster mass in relaxed systems. We also show that, following a cluster scale merger event, the BCG stellar mass lags behind the expected value from the M$_{cluster}$ - M$_{BCG}$ relation but subsequently accretes stellar mass via dry mergers as the BCG and cluster evolve towards a relaxed state.
The main goal of this study is to investigate the LF of a sample of 142 X-ray selected clusters, with spectroscopic redshift confirmation and a well defined selection function, spanning a wide redshift and mass range, and to test the LF dependence on cluster global properties, in a homogeneous and unbiased way. Our study is based on the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) photometric galaxy catalogue,associated with photometric redshifts. We constructed LFs inside a scaled radius using a selection in photometric redshift around the cluster spectroscopic redshift in order to reduce projection effects. The width of the photometric redshift selection was carefully determined to avoid biasing the LF and depended on both the cluster redshift and the galaxy magnitudes. The purity was then enhanced by applying a precise background subtraction. We constructed composite luminosity functions (CLFs) by stacking the individual LFs and studied their evolution with redshift and richness, analysing separately the brightest cluster galaxy (BCG) and non-BCG members. We fitted the dependences of the CLFs and BCG distributions parameters with redshift and richness conjointly in order to distinguish between these two effects. We find that the usual photometric redshift selection methods can bias the LF estimate if the redshift and magnitude dependence of the photometric redshift quality is not taken into account. Our main findings concerning the evolution of the galaxy luminosity distribution with redshift and richness are that, in the inner region of clusters and in the redshift-mass range we probe (about $0<z<1$ and $10^{13} M_{odot}<M_{500}<5times10^{14}M_{odot}$), the bright part of the LF (BCG excluded) does not depend much on mass or redshift except for its amplitude, whereas the BCG luminosity increases both with redshift and richness, and its scatter decreases with redshift.
This work is part of a series of studies focusing on the environment and the properties of the X-ray selected active galactic nuclei (AGN) population from the XXL survey. The present survey, given its large area, continuity, extensive multiwavelength coverage, and large-scale structure information, is ideal for this kind of study. Here, we focus on the XXL-South (XXL-S) field. Our main aim is to study the environment of the various types of X-ray selected AGN and investigate its possible role in AGN triggering and evolution. We studied the large-scale (>1 Mpc) environment up to redshift z=1 using the nearest neighbour distance method to compare various pairs of AGN types. We also investigated the small-scale environment (<0.4 Mpc) by calculating the local overdensities of optical galaxies. In addition, we built a catalogue of AGN concentrations with two or more members using the hierarchical clustering method and we correlated them with the X-ray galaxy clusters detected in the XXL survey. It is found that radio detected X-ray sources are more obscured than non-radio ones, though not all radio sources are obscured AGN. We did not find any significant differences in the large-scale clustering between luminous and faint X-ray AGN, or between obscured and unobscured ones, or between radio and non-radio sources. At local scales (<0.4 Mpc), AGN typically reside in overdense regions, compared to non-AGN; however, no differences were found between the various types of AGN. A majority of AGN concentrations with two or more members are found in the neighbourhood of X-ray galaxy clusters within <25-45 Mpc. Our results suggest that X-ray AGN are typically located in supercluster filaments, but they are also found in over- and underdense regions.
The fraction of galaxies bound in groups in the nearby Universe is high (50% at z~0). Systematic studies of galaxy properties in groups are important in order to improve our understanding of the evolution of galaxies and of the physical phenomena occurring within this environment. We have built a complete spectrophotometric sample of galaxies within X-ray detected, optically spectroscopically confirmed groups and clusters (G&C), covering a wide range of halo masses at z<= 0.6. In the context of the XXL survey, we analyse a sample of 164 G&C in the XXL-North region (XXL-N), at z <= 0.6, with a wide range of virial masses (1.24 x 10^13 <=M_500 M_sun <= 6.63 x 10^14) and X-ray luminosities ( 2.27 x 10^41 <= L^XXL_500 (erg/s)<= 2.15 x10^44). The G&C are X-ray selected and spectroscopically confirmed. We describe the membership assignment and the spectroscopic completeness analysis, and compute stellar masses. As a first scientific exploitation of the sample, we study the dependence of the galaxy stellar mass function (GSMF) on global environment. We present a spectrophotometric characterisation of the G&C and their galaxies. The final sample contains 132 G&C, 22111 field galaxies and 2225 G&C galaxies with r-band magnitude <20. Of the G&C, 95% have at least three spectroscopic members, and 70% at least ten. The shape of the GSMF seems not to depend on environment (field versus G&C) or X-ray luminosity ( used as a proxy for the virial mass of the system). These results are confirmed by the study of the correlation between mean stellar mass of G&C members and L^XXL_500.We release the spectrophotometric catalogue of galaxies with all the quantities computed in this work. As a first homogeneous census of galaxies within X-ray spectroscopically confirmed G&C at these redshifts, this sample will allow environmental studies of the evolution of galaxy properties.
X-ray extragalactic surveys are ideal laboratories for the study of the evolution and clustering of active galactic nuclei (AGN). The XXL Survey spans two fields of a combined 50 $deg^2$ observed for more than 6Ms with XMM-Newton, occupying the parameter space between deep surveys and very wide area surveys; at the same time it benefits from a wealth of ancillary data. This paper marks the first release of the XXL point source catalogue selected in the 2-10 keV energy band with limiting flux $F_{2-10keV}=4.8cdot10^{-14}rm{erg,s^{-1},cm^{-2}}$. We use both public and proprietary data sets to identify the counterparts of the X-ray point-like sources and improved upon the photometric redshift determination for AGN by applying a Random Forest classification trained to identify for each object the optimal photometric redshift model library. We also assign a probability to each source to be a star or an outlier. We model with Bayesian analysis the X-ray spectra assuming a power-law model with the presence of an absorbing medium. We find an average unabsorbed photon index of $Gamma=1.85$ and average hydrogen column density $log{N_{H}}=21.07 cm^{-2}$. We find no trend of $Gamma$ or $N_H$ with redshift and a fraction of 26% absorbed sources ($log N_{H}>22$). We show that the XXL-1000-AGN number counts extended the number counts of the COSMOS survey to higher fluxes and are fully consistent with the Euclidean expectation. We constrain the intrinsic luminosity function of AGN in the 2-10 keV energy band where the unabsorbed X-ray flux is estimated from the X-ray spectral fit up to z=3. Finally, we demonstrate the presence of a supercluster size structure at redshift 0.14, identified by means of percolation analysis of the XXL-1000-AGN sample. The XXL survey, reaching a medium flux limit and covering a wide area is a stepping stone between current deep fields and planned wide area surveys.
Context. The XMM-XXL survey uses observations from XMM-Newton to detect clusters of galaxies over a wide range in mass and redshift. The moderate PSF of XMM-Newton means that point sources within or projected onto a cluster may not be separated from the cluster emission, leading to enhanced luminosities and affecting the selection function of the cluster survey. Aims. We present the results of short Chandra observations of 21 galaxy clusters and cluster candidates at redshifts z $>$ 1 detected in the XMM-XXL survey in X-rays or selected in the optical and infra-red. Methods. With the superior angular resolution of Chandra we investigate whether there are any point sources within the cluster region that were not detected by the XMM-XXL analysis pipeline, and whether any point sources were misclassified as distant clusters. Results. Of the 14 X-ray selected clusters, nine are free from significant point source contamination, either having no previously unresolved sources detected by Chandra, or with less than about 10% of the reported XXL cluster flux being resolved into point sources. Of the other five sources, one is significantly contaminated by previously unresolved AGN, and four appear to be AGN misclassified as clusters. All but one of these cases are in the subset of less secure X-ray selected cluster detections and the false positive rate is consistent with that expected from the XXL selection function modelling. We also considered a further seven optically-selected cluster candidates associated with faint XXL sources that were not classed as clusters. By decontaminating and vetting these distant clusters, we provide a pure sample of clusters at redshift z $>$ 1 for deeper follow-up observations, and demonstrate the utility of using Chandra snapshots to test for AGN in surveys with high sensitivity but poor angular resolution.