Do you want to publish a course? Click here

Dissecting the high-z interstellar medium through intensity mapping cross-correlations

92   0   0.0 ( 0 )
 Added by Paolo Serra
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the detection, with upcoming spectroscopic surveys, of three-dimensional power spectra of emission line fluctuations produced in different phases of the Interstellar Medium (ISM) by ionized carbon, ionized nitrogen and neutral oxygen at redshift z>4. The emission line [CII] from ionized carbon at 157.7 micron, and multiple emission lines from carbon monoxide, are the main targets of planned ground-based surveys, and an important foreground for future space-based surveys like the Primordial Inflation Explorer (PIXIE). However, the oxygen [OI] (145.5 micron) line, and the nitrogen [NII] (121.9 micron and 205.2 micron) lines, might be detected in correlation with [CII] with reasonable signal-to-noise ratio (SNR). These lines are important coolants of both the neutral and the ionized medium, and probe multiple phases of the ISM. We compute predictions of the three-dimensional power spectra for two surveys designed to target the [CII] line, showing that they have the required sensitivity to detect cross-power spectra with the [OI] line, and the [NII] lines with sufficient SNR. The importance of cross-correlating multiple lines is twofold. On the one hand, we will have multiple probes of the different phases of the ISM, which is key to understand the interplay between energetic sources, the gas and dust at high redshift. This kind of studies will be useful for a next-generation space observatory such as the NASA Far-IR Surveyor. On the other end, emission lines from external galaxies are an important foreground when measuring spectral distortions of the Cosmic Microwave Background spectrum with future space-based experiments like PIXIE; measuring fluctuations in the intensity mapping regime will help constraining the mean amplitude of these lines, and will allow us to better handle this important foreground.



rate research

Read More

419 - L. Wolz , C. Blake , J.S.B. Wyithe 2017
We propose an innovative method for measuring the neutral hydrogen (HI) content of an optically-selected spectroscopic sample of galaxies through cross-correlation with HI intensity mapping measurements. We show that the HI-galaxy cross-power spectrum contains an additive shot noise term which scales with the average HI brightness temperature of the optically-selected galaxies, allowing constraints to be placed on the average HI mass per galaxy. This approach can estimate the HI content of populations too faint to directly observe through their 21cm emission over a wide range of redshifts. This cross-correlation, as a function of optical luminosity or colour, can be used to derive HI-scaling relations. We demonstrate that this signal will be detectable by cross-correlating upcoming Australian SKA Pathfinder (ASKAP) observations with existing optically-selected samples. We also use semi-analytic simulations to verify that the HI mass can be successfully recovered by our technique in the range M_HI > 10^8 M_solar, in a manner independent of the underlying power spectrum shape. We conclude that this method is a powerful tool to study galaxy evolution, which only requires a single intensity mapping dataset to infer complementary HI gas information from existing optical and infra-red observations.
327 - L. Wolz , C. Tonini , C. Blake 2015
Intensity mapping of the neutral hydrogen (HI) is a new observational tool that can be used to efficiently map the large-scale structure of the Universe over wide redshift ranges. The power spectrum of the intensity maps contains cosmological information on the matter distribution and probes galaxy evolution by tracing the HI content of galaxies at different redshifts and the scale-dependence of HI clustering. The cross-correlation of intensity maps with galaxy surveys is a robust measure of the power spectrum which diminishes systematics caused by instrumental effects and foreground removal. We examine the cross-correlation signature at redshift z=0.9 using a variant of the semi-analytical galaxy formation model SAGE (Croton et al. 2016) applied to the Millennium simulation in order to model the HI gas of galaxies as well as their optical magnitudes based on their star-formation history. We determine the clustering of the cross-correlation power for different types of galaxies determined by their colours, acting as a proxy for their star-formation activity. We find that the cross-correlation coefficient for red quiescent galaxies falls off more quickly on smaller scales k>0.2h/Mpc than for blue star-forming galaxies. Additionally, we create a mock catalogue of highly star-forming galaxies using a selection function to mimic the WiggleZ survey, and use this to predict existing and future cross-correlation measurements of the GBT and Parkes telescope. We find that the cross-power of highly star-forming galaxies shows a higher clustering on small scales than any other galaxy type and that this significantly alters the power spectrum shape on scales k>0.2h/Mpc. We show that the cross-correlation coefficient is not negligible when interpreting the cosmological cross-power spectrum. On the other hand, it contains information about the HI content of the optically selected galaxies.
With the use of the data from archives, we studied the correlations between the equivalent widths of four diffuse interstellar bands (4430$r{A}$, 5780$r{A}$, 5797$r{A}$, 6284$r{A}$) and properties of the target stars (colour excess values, distances and Galactic coordinates). Many different plots of the diffuse interstellar bands and their maps were produced and further analysed. There appears to be a structure in the plot of equivalent widths of 5780$r{A}$ DIB (and 6284$r{A}$ DIB) against the Galactic $x$-coordinate. The structure is well defined below $sim150$ m$r{A}$ and within $|x|<250$ pc, peaking around $x=170$ pc. We argue that the origin of this structure is not a statistical fluctuation. Splitting the data in the Galactic longitude into several subregions improves or lowers the well known linear relation between the equivalent widths and the colour excess, which was expected. However, some of the lines of sight display drastically different behaviour. The region within $150^circ<l<200^circ$ shows scatter in the correlation plots with the colour excess for all of the four bands with correlation coefficients $textrm{R}<0.58$. We suspect that the variation of physical conditions in the nearby molecular clouds could be responsible. Finally, the area $250^circ<l<300^circ$ displays (from the statistical point of view) significantly lower values of equivalent widths than the other regions -- this tells us that there is either a significant underabundance of carriers (when compared with the other regions) or that this has to be a result of an observational bias.
We map the distribution and properties of the Milky Ways interstellar medium as traced by diffuse interstellar bands (DIBs) detected in near-infrared stellar spectra from the SDSS-III/APOGEE survey. Focusing exclusively on the strongest DIB in the H-band, at ~1.527 microns, we present a projected map of the DIB absorption field in the Galactic plane, using a set of about 60,000 sightlines that reach up to 15 kpc from the Sun and probe up to 30 magnitudes of visual extinction. The strength of this DIB is linearly correlated with dust reddening over three orders of magnitude in both DIB equivalent width (W_DIB) and extinction, with a power law index of 1.01 +/- 0.01, a mean relationship of W_DIB/A_V = 0.1 Angstrom mag^-1, and a dispersion of ~0.05 Angstrom mag^-1 at extinctions characteristic of the Galactic midplane. These properties establish this DIB as a powerful, independent probe of dust extinction over a wide range of A_V values. The subset of about 14,000 robustly detected DIB features have an exponential W_DIB distribution. We empirically determine the intrinsic rest wavelength of this transition to be lambda_0 = 15,272.42 Angstrom, and then calculate absolute radial velocities of the carrier, which display the kinematical signature of the rotating Galactic disk. We probe the DIB carrier distribution in three dimensions and show that it can be characterized by an exponential disk model with a scaleheight of about 100 pc and a scalelength of about 5 kpc. Finally, we show that the DIB distribution also traces large-scale Galactic structures, including the central long bar and the warp of the outer disk.
120 - Yi Yang 2016
We present multiple-epoch measurements of the size and surface brightness of the light echoes from supernova (SN) 2014J in the nearby starburst galaxy M82. Hubble Space Telescope (HST) ACS/WFC images were taken ~277 and ~416 days after B-band maximum in the filters F475W, F606W, and F775W. Observations with HST WFC3/UVIS images at epochs ~216 and ~365 days (Crotts 2015) are included for a more complete analysis. The images reveal the temporal evolution of at least two major light-echo components. The first one exhibits a filled ring structure with position-angle-dependent intensity. This radially extended, diffuse echo indicates the presence of an inhomogeneous interstellar dust cloud ranging from ~100 pc to ~500 pc in the foreground of the SN. The second echo component appears as an unresolved luminous quarter-circle arc centered on the SN. The wavelength dependence of scattering measured in different dust components suggests that the dust producing the luminous arc favors smaller grain sizes, while that causing the diffuse light echo may have sizes similar to those of the Milky Way dust. Smaller grains can produce an optical depth consistent with that along the supernova-Earth line of sight measured by previous studies around maximum light. Therefore, it is possible that the dust slab, from which the luminous arc arises, is also responsible for most of the extinction towards SN 2014J. The optical depths determined from the Milky Way-like dust in the scattering matters are lower than that produced by the dust slab.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا