Do you want to publish a course? Click here

Mapping Local Interstellar Medium With Diffuse Interstellar Bands

106   0   0.0 ( 0 )
 Added by Martin Piecka
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

With the use of the data from archives, we studied the correlations between the equivalent widths of four diffuse interstellar bands (4430$r{A}$, 5780$r{A}$, 5797$r{A}$, 6284$r{A}$) and properties of the target stars (colour excess values, distances and Galactic coordinates). Many different plots of the diffuse interstellar bands and their maps were produced and further analysed. There appears to be a structure in the plot of equivalent widths of 5780$r{A}$ DIB (and 6284$r{A}$ DIB) against the Galactic $x$-coordinate. The structure is well defined below $sim150$ m$r{A}$ and within $|x|<250$ pc, peaking around $x=170$ pc. We argue that the origin of this structure is not a statistical fluctuation. Splitting the data in the Galactic longitude into several subregions improves or lowers the well known linear relation between the equivalent widths and the colour excess, which was expected. However, some of the lines of sight display drastically different behaviour. The region within $150^circ<l<200^circ$ shows scatter in the correlation plots with the colour excess for all of the four bands with correlation coefficients $textrm{R}<0.58$. We suspect that the variation of physical conditions in the nearby molecular clouds could be responsible. Finally, the area $250^circ<l<300^circ$ displays (from the statistical point of view) significantly lower values of equivalent widths than the other regions -- this tells us that there is either a significant underabundance of carriers (when compared with the other regions) or that this has to be a result of an observational bias.



rate research

Read More

We map the distribution and properties of the Milky Ways interstellar medium as traced by diffuse interstellar bands (DIBs) detected in near-infrared stellar spectra from the SDSS-III/APOGEE survey. Focusing exclusively on the strongest DIB in the H-band, at ~1.527 microns, we present a projected map of the DIB absorption field in the Galactic plane, using a set of about 60,000 sightlines that reach up to 15 kpc from the Sun and probe up to 30 magnitudes of visual extinction. The strength of this DIB is linearly correlated with dust reddening over three orders of magnitude in both DIB equivalent width (W_DIB) and extinction, with a power law index of 1.01 +/- 0.01, a mean relationship of W_DIB/A_V = 0.1 Angstrom mag^-1, and a dispersion of ~0.05 Angstrom mag^-1 at extinctions characteristic of the Galactic midplane. These properties establish this DIB as a powerful, independent probe of dust extinction over a wide range of A_V values. The subset of about 14,000 robustly detected DIB features have an exponential W_DIB distribution. We empirically determine the intrinsic rest wavelength of this transition to be lambda_0 = 15,272.42 Angstrom, and then calculate absolute radial velocities of the carrier, which display the kinematical signature of the rotating Galactic disk. We probe the DIB carrier distribution in three dimensions and show that it can be characterized by an exponential disk model with a scaleheight of about 100 pc and a scalelength of about 5 kpc. Finally, we show that the DIB distribution also traces large-scale Galactic structures, including the central long bar and the warp of the outer disk.
The Sun lies in the middle of an enormous cavity of a million degree gas, known as the Local Bubble. The Local Bubble is surrounded by a wall of denser neutral and ionized gas. The Local Bubble extends around 100 pc in the plane of Galaxy and hundreds of parsecs vertically, but absorption-line surveys of neutral sodium and singly-ionized calcium have revealed a highly irregular structure and the presence of neutral clouds within an otherwise tenuous and hot gas. We have undertaken an all-sky, European-Iranian survey of the Local Bubble in the absorption of a number of diffuse interstellar bands (DIBs) to offer a novel view of our neighbourhood. Our dedicated campaigns with ESOs New Technology Telescope and the INGs Isaac Newton Telescope comprise high signal-to-noise, medium-resolution spectra, concentrating on the 5780 and 5797 AA bands which trace ionized/irradiated and neutral/shielded environments, respectively; their carriers are unknown but likely to be large carbonaceous molecules. With about 660 sightlines towards early-type stars distributed over distances up to about 200 pc, our data allow us to reconstruct the first ever 3D DIB map of the Local Bubble, which we present here. While we confirm our expectations that the 5780 AA DIB is relatively strong compared to the 5797 AA DIB in hot/irradiated regions such as which prevail within the Local Bubble and its walls, and the opposite is true for cooler/shielded regions beyond the confines of the Local Bubble, we unexpectedly also detect DIB cloudlets inside of the Local Bubble. These results reveal new insight into the structure of the Local Bubble, as well as helping constrain our understanding of the carriers of the DIBs.
132 - Alain Omont 2015
Recently, the presence of fullerenes in the interstellar medium (ISM) has been confirmed especially with the first confirmed identification of two strong diffuse interstellar bands (DIBs) with C60+. This justifies reassesing the importance of interstellar fullerenes of various sizes with endohedral or exohedral inclusions and heterofullerenes (EEHFs). The phenomenology of fullerenes is complex. In addition to fullerene formation in shock shattering, fully dehydrogenated PAHs in diffuse interstellar (IS) clouds could perhaps efficiently transform into fullerenes including EEHFs. But it is extremely difficult to assess their expected abundance, composition and size distribution, except for C60+. EEHFs share many properties with C60, as regards stability, formation/destruction and chemical processes, and many basic spectral features. We address the interstellar importance of various EEHFs as possible DIB carriers. Specifically, we discuss IS properties and the contributions of fullerenes of various sizes and charge such as C60+, metallofullerenes, heterofullerenes, fulleranes, fullerene-PAH compounds, H2@C60. We conclude that the landscape of interstellar fullerenes is probably much richer than heretofore realized. EEHFs, together with pure fullerenes of various sizes, have properties necessary to be suitably carriers of DIBs: carbonaceous nature; stability and resilience in the ISM; various heteroatoms and ionization states; relatively easy formation; few stable isomers; right spectral range; energy internal conversion; Jahn-Teller fine structure. This is supported by the C60+ DIBs. But, the lack of information about optical spectra other than C60 and IS abundances still precludes definitive assessment of the importance of fullerenes as DIB carriers. Their compounds could significantly contribute to DIBs, but it still seems difficult that they are the only important DIB carriers.
172 - Keith T. Smith 2013
We present the first sample of diffuse interstellar bands (DIBs) in the nearby galaxy M33. Studying DIBs in other galaxies allows the behaviour of the carriers to be examined under interstellar conditions which can be quite different from those of the Milky Way, and to determine which DIB properties can be used as reliable probes of extragalactic interstellar media. Multi-object spectroscopy of 43 stars in M33 has been performed using Keck/DEIMOS. The stellar spectral types were determined and combined with literature photometry to determine the M33 reddenings E(B-V)_M33. Equivalent widths or upper limits have been measured for the {lambda}5780 DIB towards each star. DIBs were detected towards 20 stars, demonstrating that their carriers are abundant in M33. The relationship with reddening is found to be at the upper end of the range observed in the Milky Way. The line of sight towards one star has an unusually strong ratio of DIB equivalent width to E(B-V)_M33, and a total of seven DIBs were detected towards this star.
The identification of the carriers of the diffuse interstellar bands (DIBs) remains to be established, with the exception of five bands attributed to C60+, although it is generally agreed that DIB carriers should be large carbon-based molecules (with ~10-100 atoms) in the gas phase, such as polycyclic aromatic hydrocarbons (PAHs), long carbon chains or fullerenes. More specific possible carriers among PAHs are investigated, namely elongated molecules, which could explain a correlation between the DIB wavelength and the apparent UV resilience of their carriers. We address the case of polyacenes, C4N+2-H2N+4, with N~10-18 fused rectilinear aligned hexagons. Polyacenes are attractive DIB carrier candidates because their high symmetry and large linear size allow them to form regular series of bands in the visible range with strengths larger than most other PAHs, as confirmed by recent laboratory results up to undecacene (C46H26). Those with very strong bands in the DIB spectral domain are just at the limit of stability against UV photodissociation. They are part of the prominent PAH family of interstellar carbon compounds, meaning that only ~10-5 of the total PAH abundance is enough to account for a medium-strength DIB. After summarizing the current knowledge about the properties of polyacenes and recent laboratory results, the likelihood that they might meet the criteria for being carriers of some DIBs is addressed by reviewing the following properties: wavelength and strength of their series of visible bands; interstellar stability and abundances, charge state and hydrogenation; and DIB rotation profiles. No definite inconsistency has been identified that precludes polyacenes from being the carriers of some DIBs with medium or weak strength, including the so-called C2 DIBs. But additional experimental data about long acenes and their visible bands are needed to make robust conclusions
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا