Do you want to publish a course? Click here

Projection-based filtering for stochastic reaction networks

121   0   0.0 ( 0 )
 Added by Shinsuke Koyama
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

This study concerns online inference (i.e., filtering) on the state of reaction networks, conditioned on noisy and partial measurements. The difficulty in deriving the equation that the conditional probability distribution of the state satisfies stems from the fact that the master equation, which governs the evolution of the reaction networks, is analytically intractable. The linear noise approximation (LNA) technique, which is widely used in the analysis of reaction networks, has recently been applied to develop approximate inference. Here, we apply the projection method to derive approximate filters, and compare them to a filter based on the LNA numerically in their filtering performance. We also contrast the projection method with moment-closure techniques in terms of approximating the evolution of stochastic reaction networks.



rate research

Read More

In the past few decades, the development of fluorescent technologies and microscopic techniques has greatly improved scientists ability to observe real-time single-cell activities. In this paper, we consider the filtering problem associate with these advanced technologies, i.e., how to estimate latent dynamic states of an intracellular multiscale stochastic reaction network from time-course measurements of fluorescent reporters. A good solution to this problem can further improve scientists ability to extract information about intracellular systems from time-course experiments. A straightforward approach to this filtering problem is to use a particle filter where particles are generated by simulation of the full model and weighted according to observations. However, the exact simulation of the full dynamic model usually takes an impractical amount of computational time and prevents this type of particle filters from being used for real-time applications, such as transcription regulation networks. Inspired by the recent development of hybrid approximations to multiscale chemical reaction networks, we approach the filtering problem in an alternative way. We first prove that accurate solutions to the filtering problem can be constructed by solving the filtering problem for a reduced model that represents the dynamics as a hybrid process. The model reduction is based on exploiting the time-scale separations in the original network and, therefore, can greatly reduce the computational effort required to simulate the dynamics. As a result, we are able to develop efficient particle filters to solve the filtering problem for the original model by applying particle filters to the reduced model. We illustrate the accuracy and the computational efficiency of our approach using several numerical examples.
We consider the problem of estimating the dynamic latent states of an intracellular multiscale stochastic reaction network from time-course measurements of fluorescent reporters. We first prove that accurate solutions to the filtering problem can be constructed by solving the filtering problem for a reduced model that represents the dynamics as a hybrid process. The model reduction is based on exploiting the time-scale separations in the original network, and it can greatly reduce the computational effort required to simulate the dynamics. This enables us to develop efficient particle filters to solve the filtering problem for the original model by applying particle filters to the reduced model. We illustrate the accuracy and the computational efficiency of our approach using a numerical example.
The Chemical Master Equation (CME) is well known to provide the highest resolution models of a biochemical reaction network. Unfortunately, even simulating the CME can be a challenging task. For this reason more simple approximations to the CME have been proposed. In this work we focus on one such model, the Linear Noise Approximation. Specifically, we consider implications of a recently proposed LNA time-scale separation method. We show that the reduced order LNA converges to the full order model in the mean square sense. Using this as motivation we derive a network structure preserving reduction algorithm based on structured projections. We present convex optimisation algorithms that describe how such projections can be computed and we discuss when structured solutions exits. We also show that for a certain class of systems, structured projections can be found using basic linear algebra and no optimisation is necessary. The algorithms are then applied to a linearised stochastic LNA model of the yeast glycolysis pathway.
The probability distribution describing the state of a Stochastic Reaction Network evolves according to the Chemical Master Equation (CME). It is common to estimated its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases these simulations can take an impractical amount of computational time. Therefore many methods have been developed that approximate the Stochastic Process underlying the Chemical Master Equation. Prominent strategies are Hybrid Models that regard the firing of some reaction channels as being continuous and applying the quasi-stationary assumption to approximate the dynamics of fast subnetworks. However as the dynamics of a Stochastic Reaction Network changes with time these approximations might have to be adapted during the simulation. We develop a method that approximates the solution of a CME by automatically partitioning the reaction dynamics into discrete/continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from Systems Biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time.
In this paper, we consider the problem of model order reduction of stochastic biochemical networks. In particular, we reduce the order of (the number of equations in) the Linear Noise Approximation of the Chemical Master Equation, which is often used to describe biochemical networks. In contrast to other biochemical network reduction methods, the presented one is projection-based. Projection-based methods are powerful tools, but the cost of their use is the loss of physical interpretation of the nodes in the network. In order alleviate this drawback, we employ structured projectors, which means that some nodes in the network will keep their physical interpretation. For many models in engineering, finding structured projectors is not always feasible; however, in the context of biochemical networks it is much more likely as the networks are often (almost) monotonic. To summarise, the method can serve as a trade-off between approximation quality and physical interpretation, which is illustrated on numerical examples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا