No Arabic abstract
Recently, hexagonal boron nitride (h-BN) has been shown to act as an ideal substrate to graphene by greatly improving the material transport properties thanks to its atomically flat surface, low interlayer electronic coupling and almost perfect reticular matching. Chemical vapour deposition (CVD) is presently considered the most scalable approach to grow graphene directly on h-BN. However, for the catalyst-free approach, poor control over the shape and crystallinity of the graphene grains and low growth rates are typically reported. In this work we investigate the crystallinity of differently shaped grains and identify a path towards a real van der Waals epitaxy of graphene on h-BN by adopting a catalyst-free CVD process. We demonstrate the polycrystalline nature of circular-shaped pads and attribute the stemming of different oriented grains to airborne contamination of the h-BN flakes. We show that single-crystal grains with six-fold symmetry can be obtained by adopting high hydrogen partial pressures during growth. Notably, growth rates as high as 100 nm/min are obtained by optimizing growth temperature and pressure. The possibility of synthesizing single-crystal graphene on h-BN with appreciable growth rates by adopting a simple CVD approach is a step towards an increased accessibility of this promising van der Waals heterostructure.
In this work we present a simple pathway to obtain large single-crystal graphene on copper (Cu) foils with high growth rates using a commercially available cold-wall chemical vapour deposition (CVD) reactor. We show that graphene nucleation density is drastically reduced and crystal growth is accelerated when: i) using ex-situ oxidised foils; ii) performing annealing in an inert atmosphere prior to growth; iii) enclosing the foils to lower the precursor impingement flux during growth. Growth rates as high as 14.7 and 17.5 micrometers per minute are obtained on flat and folded foils, respectively. Thus, single-crystal grains with lateral size of about one millimetre can be obtained in just one hour. The samples are characterised by optical microscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy as well as selected area electron diffraction (SAED) and low-energy electron diffraction (LEED), which confirm the high quality and homogeneity of the films. The development of a process for the quick production of large grain graphene in a commonly used commercial CVD reactor is a significant step towards an increased accessibility to millimetre-sized graphene crystals.
We study room temperature spin transport in graphene devices encapsulated between a layer-by-layer-stacked two-layer-thick chemical vapour deposition (CVD) grown hexagonal boron nitride (hBN) tunnel barrier, and a few-layer-thick exfoliated-hBN substrate. We find mobilities and spin-relaxation times comparable to that of SiO$_2$ substrate based graphene devices, and obtain a similar order of magnitude of spin relaxation rates for both the Elliott-Yafet and DYakonov-Perel mechanisms. The behaviour of ferromagnet/two-layer-CVD-hBN/graphene/hBN contacts ranges from transparent to tunneling due to inhomogeneities in the CVD-hBN barriers. Surprisingly, we find both positive and negative spin polarizations for high-resistance two-layer-CVD-hBN barrier contacts with respect to the low-resistance contacts. Furthermore, we find that the differential spin injection polarization of the high-resistance contacts can be modulated by DC bias from -0.3 V to +0.3 V with no change in its sign, while its magnitude increases at higher negative bias. These features mark a distinctive spin injection nature of the two-layer-CVD-hBN compared to the bilayer-exfoliated-hBN tunnel barriers.
Growing large-area single-crystal monolayers is the holy grail of graphene synthesis. In this work, the efficiency of graphene growth and the quality of their continuous films are explored through the time evolution of individual domains and their surface coverage on the substrate. Our phase-field modeling results and experimental characterization clearly demonstrate the critical roles of the deposition flux, edge-reaction kinetics and the surface diffusion of active carbon sources in modulating the pattern evolution and rate of growth. The contrast in edge-kinetics-limited and surface-diffusion-limited regimes is remarkable, which can be characterized by the evolution of domain patterns and considered as an indicator of the growth regime. Common features exist in these two regimes, showing that the growth rate scales with time as t2 in the early stage of growth and is regime-independent, which is explained by the coarsen profiles of carbon concentration for both the compact and dendritic domains. The rate decays rapidly in the final stage of growth due to the competition between neighboring domains on the limited carbon sources diffusing on the substrate, which is highly regime-sensitive and extremely low in the surface-diffusion-limited regime with narrow gaps between the domains to be filled. Based on these findings, synthesis strategies to improve the growth efficiency and film quality are discussed.
Germanium is emerging as the substrate of choice for the growth of graphene in CMOS-compatible processes. For future application in next generation devices the accurate control over the properties of high-quality graphene synthesized on Ge surfaces, such as number of layers and domain size, is of paramount importance. Here we investigate the role of the process gas flows on the CVD growth of graphene on Ge(100). The quality and morphology of the deposited material is assessed by using microRaman spectroscopy, x-ray photoemission spectroscopy, scanning electron and atomic force microscopies. We find that by simply varying the carbon precursor flow different growth regimes - yielding to graphene nanoribbons, graphene monolayer and graphene multilayer - are established. We identify the growth conditions yielding to a layer-by-layer growth regime and report on the achievement of homogeneous monolayer graphene with an average intensity ratio of 2D and G bands in the Raman map larger than 3.
The integration of graphene (Gr) with nitride semiconductors is highly interesting for applications in high-power/high-frequency electronics and optoelectronics. In this work, we demonstrated the direct growth of Gr on Al0.5Ga0.5N/sapphire templates by propane (C3H8) chemical vapor deposition (CVD) at temperature of 1350{deg}C. After optimization of the C3H8 flow rate, a uniform and conformal Gr coverage was achieved, which proved beneficial to prevent degradation of AlGaN morphology. X-ray photoemission spectroscopy (XPS) revealed Ga loss and partial oxidation of Al in the near-surface AlGaN region. Such chemical modification of a 2 nm thick AlGaN surface region was confirmed by cross-sectional scanning transmission electron microscopy (STEM) combined with electron energy loss spectroscopy (EELS), which also showed the presence of a bilayer of Gr with partial sp2/sp3 hybridization. Raman spectra indicated that the deposited Gr is nanocrystalline (with domain size 7 nm) and compressively strained. A Gr sheet resistance of 15.8 kOhm/sq was evaluated by four-point-probe measurements, consistently with the nanocrystalline nature of these films. Furthermore, nanoscale resolution current mapping by conductive atomic force microscopy (C-AFM) indicated local variations of the Gr carrier density at a mesoscopic scale, which can be ascribed to changes in the charge transfer from the substrate due to local oxidation of AlGaN or to the presence of Gr wrinkles.