Do you want to publish a course? Click here

Observations of asymmetric velocity fields and gas cooling in the NGC 4636 galaxy group X-ray halo

91   0   0.0 ( 0 )
 Added by Jussi Ahoranta
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

This study aims to probe the thermodynamic properties of the hot intragroup medium (IGM) plasma in the core regions of the NGC 4636 galaxy group by detailed measurements of several emission lines and their relative intensities. We analyzed deep XMM-Newton Reflection Grating Spectrometer (RGS) data in five adjacent spectral regions in the central parts of the NGC 4636 galaxy group. We examined the suppression of the Fe xvii resonance line (15.01 {AA}) as compared to the forbidden lines of the same ion (17.05 {AA} and 17.10 {AA}). The presence and radial dependence of the cooling flow was investigated through spectral modeling. In addition, a parallel analysis with deep Chandra Advances CCD Imaging Spectrometer (ACIS) data was conducted to gain additional information about the thermodynamical properties of the IGM. We find that the plasma at the group center to the north shows efficient Fe xvii ion resonant scattering, wheras no resonant scattering was detected at the south side. The regions featuring resonant scattering coincide with those embodying large amounts of cool ($kTlesssim0.4$ keV) gas phases, and the spectral imprints of cooling gas with a total mass deposition rate of $sim0.8$ M$_{odot}$ yr$^{-1}$ within the examined region of $2.4^{prime}times 5.0^{prime}$. We interpret the results as possible evidence of asymmetric turbulence distribution in the NGC 4636 IGM: Turbulence dominates the gas dynamics to the south, while collective gas motions characterize the dynamics to the north. X-ray images show imprints of energetic AGN at both sides, yet we find evidence of turbulence heating at the south and gas cooling at the north of the core. We infer that the observed asymmetry may be the result of the specific observation angle to the source, or arise from the turbulence driven by core sloshing at south side.



rate research

Read More

The relative importance of the physical processes shaping the thermodynamics of the hot gas permeating rotating, massive early-type galaxies is expected to be different from that in non-rotating systems. Here, we report the results of the analysis of XMM-Newton data for the massive, lenticular galaxy NGC 7049. The galaxy harbours a dusty disc of cool gas and is surrounded by an extended hot X-ray emitting gaseous atmosphere with unusually high central entropy. The hot gas in the plane of rotation of the cool dusty disc has a multi-temperature structure, consistent with ongoing cooling. We conclude that the rotational support of the hot gas is likely capable of altering the multiphase condensation regardless of the $t_{rm cool}/t_{rm ff}$ ratio, which is here relatively high, $sim 40$. However, the measured ratio of cooling time and eddy turnover time around unity ($C$-ratio $approx 1$) implies significant condensation, and at the same time, the constrained ratio of rotational velocity and the velocity dispersion (turbulent Taylor number) ${rm Ta_t} > 1$ indicates that the condensing gas should follow non-radial orbits forming a disc instead of filaments. This is in agreement with hydrodynamical simulations of massive rotating galaxies predicting a similarly extended multiphase disc.
We present the results of an X-ray mass analysis of the early-type galaxy NGC 4636, using Chandra data. We have compared the X-ray mass density profile with that derived from a dynamical analysis of the systems globular clusters (GCs). Given the observed interaction between the central active galactic nucleus and the X-ray emitting gas in NGC 4636, we would expect to see a discrepancy in the masses recovered by the two methods. Such a discrepancy exists within the central ~10kpc, which we interpret as the result of non-thermal pressure support or a local inflow. However, over the radial range ~10-30kpc, the mass profiles agree within the 1-sigma errors, indicating that even in this highly disturbed system, agreement can be sought at an acceptable level of significance over intermediate radii, with both methods also indicating the need for a dark matter halo. However, at radii larger than 30kpc, the X-ray mass exceeds the dynamical mass, by a factor of 4-5 at the largest disagreement. A Fully Bayesian Significance Test finds no statistical reason to reject our assumption of velocity isotropy, and an analysis of X-ray mass profiles in different directions from the galaxy centre suggests that local disturbances at large radius are not the cause of the discrepancy. We instead attribute the discrepancy to the paucity of GC kinematics at large radius, coupled with not knowing the overall state of the gas at the radius where we are reaching the group regime (>30kpc), or a combination of the two.
We present new ALMA CO(2--1) observations of two well studied group-centered elliptical galaxies: NGC~4636 and NGC~5846. In addition, we include a revised analysis of Cycle 0 ALMA observations of the central galaxy in the NGC~5044 group that has been previously published. We find evidence that molecular gas, in the form of off-center orbiting clouds, is a common presence in bright group-centered galaxies (BGG). CO line widths are $gtrsim 10$ times broader than Galactic molecular clouds, and using the reference Milky Way $X_{CO}$, the total molecular mass ranges from as low as $2.6times 10^5 M_odot$ in NGC~4636 to $6.1times 10^7 M_odot$ in NGC~5044. With these parameters the virial parameters of the molecular structures is $gg 1$. Complementary observations of NGC~5846 and NGC~4636 using the ALMA Compact Array (ACA) do not exhibit any detection of a CO diffuse component at the sensitivity level achieved by current exposures. The origin of the detected molecular features is still uncertain, but these ALMA observations suggest that they are the end product of the hot gas cooling process and not the result of merger events. Some of the molecular clouds are associated with dust features as revealed by HST dust extinction maps suggesting that these clouds formed from dust-enhanced cooling. The global nonlinear condensation may be triggered via the chaotic turbulent field or buoyant uplift. The large virial parameter of the molecular structures and correlation with the warm ($10^3 - 10^5 K$)/hot ($ge10^6$) phase velocity dispersion provide evidence that they are unbound giant molecular associations drifting in the turbulent field, consistently with numerical predictions of the chaotic cold accretion process. Alternatively, the observed large CO line widths may be generated by molecular gas flowing out from cloud surfaces due to heating by the local hot gas atmosphere.
We determine the total enclosed mass profile from 0.7 to 35 kpc in the elliptical galaxy NGC 4636 based on the hot interstellar medium temperature profile measured using the Chandra X-ray Observatory, and other X-ray and optical data. The total mass increases as radius to the power 1.2 to a good approximation over this range in radii, attaining a total of 1.5 trillion solar masses (corresponding to a mass-to-light ratio of 40 solar masses per solar visual luminosity) at 35 kpc. We find that at least half, and as much as 80%, of the mass within the optical half-light radius is non-luminous, implying that NGC 4636 has an exceptionally low baryon fraction. The large inferred dark matter concentration and central dark matter density, consistent with the upper end of the range expected for standard cold dark matter halos, imply that mechanisms proposed to explain low dark matter densities in less massive galaxies (e.g., self-interacting dark matter, warm dark matter, explosive feedback) are not effective in elliptical galaxies (and presumably, by extension, in galaxy clusters). The composite (black hole, stars, and dark matter) mass distribution has a generally steep slope with no core, consistent with gravitational lensing studies.
72 - W. Pietsch 2000
Spatial and spectral analysis of deep ROSAT HRI and PSPC observations of the near edge-on starburst galaxy NGC 253 reveal diffuse soft X-ray emission, which contributes 80% to its total X-ray luminosity (L$_{rm X} = 5 10^{39}$ ergsec, corrected for foreground absorption). The nuclear area, disk, and halo contribution to the luminosity is about equal. The starburst nucleus itself is highly absorbed and not visible in the ROSAT band. We describe in detail spectra and morphology of the emission from the nuclear area, disk and halo and compare our results to observations at other wavelengths and from other galaxies. (abridged)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا