Do you want to publish a course? Click here

X-ray observations of the starburst galaxy NGC 253:II. Extended emission from hot gas in the nuclear area, disk, and halo

73   0   0.0 ( 0 )
 Added by Wolfgang Pietsch
 Publication date 2000
  fields Physics
and research's language is English
 Authors W. Pietsch




Ask ChatGPT about the research

Spatial and spectral analysis of deep ROSAT HRI and PSPC observations of the near edge-on starburst galaxy NGC 253 reveal diffuse soft X-ray emission, which contributes 80% to its total X-ray luminosity (L$_{rm X} = 5 10^{39}$ ergsec, corrected for foreground absorption). The nuclear area, disk, and halo contribution to the luminosity is about equal. The starburst nucleus itself is highly absorbed and not visible in the ROSAT band. We describe in detail spectra and morphology of the emission from the nuclear area, disk and halo and compare our results to observations at other wavelengths and from other galaxies. (abridged)



rate research

Read More

Aims: We present a study of the diffuse X-ray emission in the halo and the disc of the starburst galaxy NGC 253. Methods: After removing point-like sources, we analysed XMM-Newton images, hardness ratio maps and spectra from several regions in the halo and the disc. We introduce a method to produce vignetting corrected images from the EPIC pn data, and we developed a procedure that allows a correct background treatment for low surface brightness spectra, using a local background, together with closed filter observations. Results: Most of the emission from the halo is at energies below 1 keV. In the disc, also emission at higher energies is present. The extent of the diffuse emission along the major axis of the disc is 13.6 kpc. The halo resembles a horn structure and reaches out to ~9 kpc perpendicular to the disc. Disc regions that cover star forming regions, like spiral arms, show harder spectra than regions with lower star forming activity. Models for spectral fits of the disc regions need at least three components: two thermal plasmas with solar abundances plus a power law and galactic foreground absorption. Temperatures are between 0.1 and 0.3 keV and between 0.3 and 0.9 keV for the soft and the hard component, respectively. The power law component may indicate an unresolved contribution from X-ray binaries in the disc. The halo emission is not uniform, neither spatially nor spectrally. The southeastern halo is softer than the northwestern halo. To model the spectra in the halo, we needed two thermal plasmas with solar abundances plus galactic foreground absorption. Temperatures are around 0.1 and 0.3 keV. A comparison between X-ray and UV emission shows that both originate from the same regions.
Very-high-energy (VHE; E >100 GeV) and high-energy (HE; 100 MeV < E < 100 GeV) data from gamma-ray observations performed with the H.E.S.S. telescope array and the Fermi-LAT instrument, respectively, are analysed in order to investigate the non-thermal processes in the starburst galaxy NGC 253. The VHE gamma-ray data can be described by a power law in energy with differential photon index Gamma=2.14 pm 0.18_stat pm 0.30_sys and differential flux normalisation at 1 TeV of F_0 = (9.6 pm 1.5_stat (+5.7,-2.9)_sys) x 10^{-14} TeV^{-1} cm^{-2} s^{-1}. A power-law fit to the differential HE gamma-ray spectrum reveals a photon index of Gamma=2.24 pm 0.14_stat pm 0.03_sys and an integral flux between 200 MeV and 200 GeV of F(0.2-200 GeV) = (4.9 pm 1.0_stat pm 0.3_sys) x 10^{-9} cm^{-2} s^{-1}. No evidence for a spectral break or turnover is found over the dynamic range of both the LAT instrument and the H.E.S.S. experiment: a combined fit of a power law to the HE and VHE gamma-ray data results in a differential photon index Gamma=2.34 pm 0.03 with a p-value of 30%. The gamma-ray observations indicate that at least about 20% of the energy of the cosmic rays capable of producing hadronic interactions is channeled into pion production. The smooth alignment between the spectra in the HE and VHE gamma-ray domain suggests that the same transport processes dominate in the entire energy range. Advection is most likely responsible for charged particle removal from the starburst nucleus from GeV to multiple TeV energies. In a hadronic scenario for the gamma-ray production, the single overall power-law spectrum observed would therefore correspond to the mean energy spectrum produced by the ensemble of cosmic-ray sources in the starburst region.
We present a detailed case study of the diffuse X-ray and H-alpha emission in the halo of NGC 253, a nearby edge-on starburst galaxy driving a galactic superwind. The arcsecond spatial resolution of the Chandra ACIS instrument allows us to study the spatial and spectral properties of the diffuse X-ray emitting plasma with greatly superior spatial and spectral resolution compared to previous X-ray instruments. We find statistically significant structure within the X-ray diffuse emission on angular scales down to ~10 arcsec (~130 pc). There is no statistically significant evidence for any spatial variation in the spectral properties of the diffuse emission, over scales from ~400 pc to ~3 kpc. We show that the X-shaped soft X-ray morphology of the superwind, previously revealed by ROSAT, is matched by very similar X-shaped H-alpha emission, extending at least 8 kpc above the plane of the galaxy. In the northern halo the X-ray emission appears to lie slightly interior to the boundary marked by the H-alpha emission. The total 0.3-2.0 keV energy band X-ray luminosity of the northern halo, L_X ~ 5e38 erg/s, is very similar to the halo H-alpha luminosity of L_Ha ~ 4e38 erg/s, both of which are a small fraction of the estimated wind energy injection rate of ~1e42 erg/s from supernovae in the starburst. We show that there are a variety of models that can simultaneously explain spatially-correlated X-ray and H-alpha emission in the halos of starburst galaxies. These findings indicate that the physical origin of the X-ray-emitting million-degree plasma in superwinds is closely linked to the presence of much cooler and denser T ~ 1e4 K gas, not only within the central kpc regions of starbursts, but also on ~10 kpc-scales within the halos of these galaxies. (Abridged)
65 - M. Bauer 2006
Aims: Using XMM-Newton data, we have aimed to study the nuclear outflow of the nearby starburst galaxy NGC 253 in X-rays with respect to its morphology and to spectral variations along the outflow. Methods: We analysed XMM-Newton RGS spectra, RGS brightness profiles in cross-dispersion direction, narrow band RGS and EPIC images and EPIC PN brightness profiles of the nuclear region and of the outflow of NGC 253. Results: We detect a diversity of emission lines along the outflow of NGC 253. This includes the He-like ions of Si, Mg, Ne and O and their corresponding ions in the next higher ionisation state. Additionally transitions from Fe XVII and Fe XVIII are prominent. The derived temperatures from line ratios along the outflow range from 0.21+/-0.01 to 0.79+/-0.06 keV and the ratio of Fe XVII lines indicates a predominantly collisionally ionised plasma. Additionally we see indications of a recombining or underionized plasma in the Fe XVII line ratio. Derived electron densities are 0.106+/-0.018 cm^-3 for the nuclear region and 0.025+/-0.003 cm^-3 for the outflow region closest to the centre. The RGS image in the O VIII line energy clearly shows the morphology of an outflow extending out to ~750 pc along the south-east minor axis, while the north-west part of the outflow is not seen in O VIII due to the heavy absorption by the galactic disc. This is the first time that the hot wind fluid has been detected directly. The limb brightening seen in Chandra and XMM-Newton EPIC observations is only seen in the energy range containing the Fe XVII lines (550-750 eV). In all other energy ranges between 400 and 2000 eV no clear evidence of limb brightening could be detected.
257 - C.Itoh , R.Enomoto , S.Yanagita 2006
The CANGAROO-II telescope observed sub-TeV gamma-ray emission from the nearby starburst galaxy NGC 253. The emission region was extended with a radial size of 0.3-0.6 degree. On the contrary, H.E.S.S could not confirm this emission and gave upper limits at the level of the CANGAROO-II flux. In order to resolve this discrepancy, we analyzed new observational results for NGC 253 by CANGAROO-III and also assessed the results by CANGAROO-II. Observation was made with three telescopes of the CANGAROO-III in October 2004. We analyzed three-fold coincidence data by the robust Fisher Discriminant method to discriminate gamma ray events from hadron events. The result by the CANGAROO-III was negative. The upper limit of gamma ray flux was 5.8% Crab at 0.58 TeV for point-source assumption. In addition, the significance of the excess flux of gamma-rays by the CANGAROO-II was lowered to less than 4 sigma after assessing treatment of malfunction of photomultiplier tubes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا